Metamath Proof Explorer


Theorem dssmapfvd

Description: Value of the duality operator for self-mappings of subsets of a base set, B . (Contributed by RP, 19-Apr-2021)

Ref Expression
Hypotheses dssmapfvd.o O=bVf𝒫b𝒫bs𝒫bbfbs
dssmapfvd.d D=OB
dssmapfvd.b φBV
Assertion dssmapfvd φD=f𝒫B𝒫Bs𝒫BBfBs

Proof

Step Hyp Ref Expression
1 dssmapfvd.o O=bVf𝒫b𝒫bs𝒫bbfbs
2 dssmapfvd.d D=OB
3 dssmapfvd.b φBV
4 pweq b=B𝒫b=𝒫B
5 4 4 oveq12d b=B𝒫b𝒫b=𝒫B𝒫B
6 id b=Bb=B
7 difeq1 b=Bbs=Bs
8 7 fveq2d b=Bfbs=fBs
9 6 8 difeq12d b=Bbfbs=BfBs
10 4 9 mpteq12dv b=Bs𝒫bbfbs=s𝒫BBfBs
11 5 10 mpteq12dv b=Bf𝒫b𝒫bs𝒫bbfbs=f𝒫B𝒫Bs𝒫BBfBs
12 3 elexd φBV
13 ovex 𝒫B𝒫BV
14 mptexg 𝒫B𝒫BVf𝒫B𝒫Bs𝒫BBfBsV
15 13 14 mp1i φf𝒫B𝒫Bs𝒫BBfBsV
16 1 11 12 15 fvmptd3 φOB=f𝒫B𝒫Bs𝒫BBfBs
17 2 16 eqtrid φD=f𝒫B𝒫Bs𝒫BBfBs