Metamath Proof Explorer


Theorem dvafplusg

Description: Ring addition operation for the constructed partial vector space A. (Contributed by NM, 9-Oct-2013) (Revised by Mario Carneiro, 22-Jun-2014)

Ref Expression
Hypotheses dvafplus.h H=LHypK
dvafplus.t T=LTrnKW
dvafplus.e E=TEndoKW
dvafplus.u U=DVecAKW
dvafplus.f F=ScalarU
dvafplus.p +˙=+F
Assertion dvafplusg KVWH+˙=sE,tEfTsftf

Proof

Step Hyp Ref Expression
1 dvafplus.h H=LHypK
2 dvafplus.t T=LTrnKW
3 dvafplus.e E=TEndoKW
4 dvafplus.u U=DVecAKW
5 dvafplus.f F=ScalarU
6 dvafplus.p +˙=+F
7 eqid EDRingKW=EDRingKW
8 1 7 4 5 dvasca KVWHF=EDRingKW
9 8 fveq2d KVWH+F=+EDRingKW
10 6 9 eqtrid KVWH+˙=+EDRingKW
11 eqid +EDRingKW=+EDRingKW
12 1 2 3 7 11 erngfplus KVWH+EDRingKW=sE,tEfTsftf
13 10 12 eqtrd KVWH+˙=sE,tEfTsftf