Metamath Proof Explorer


Theorem dvavsca

Description: Ring addition operation for the constructed partial vector space A. (Contributed by NM, 11-Oct-2013)

Ref Expression
Hypotheses dvafvsca.h H=LHypK
dvafvsca.t T=LTrnKW
dvafvsca.e E=TEndoKW
dvafvsca.u U=DVecAKW
dvafvsca.s ·˙=U
Assertion dvavsca KVWHREFTR·˙F=RF

Proof

Step Hyp Ref Expression
1 dvafvsca.h H=LHypK
2 dvafvsca.t T=LTrnKW
3 dvafvsca.e E=TEndoKW
4 dvafvsca.u U=DVecAKW
5 dvafvsca.s ·˙=U
6 1 2 3 4 5 dvafvsca KVWH·˙=sE,fTsf
7 6 oveqd KVWHR·˙F=RsE,fTsfF
8 fveq1 s=Rsf=Rf
9 fveq2 f=FRf=RF
10 eqid sE,fTsf=sE,fTsf
11 fvex RFV
12 8 9 10 11 ovmpo REFTRsE,fTsfF=RF
13 7 12 sylan9eq KVWHREFTR·˙F=RF