Metamath Proof Explorer


Theorem dvcl

Description: The derivative function takes values in the complex numbers. (Contributed by Mario Carneiro, 7-Aug-2014) (Revised by Mario Carneiro, 9-Feb-2015)

Ref Expression
Hypotheses dvcl.s φS
dvcl.f φF:A
dvcl.a φAS
Assertion dvcl φBFSCC

Proof

Step Hyp Ref Expression
1 dvcl.s φS
2 dvcl.f φF:A
3 dvcl.a φAS
4 limccl zABFzFBzBlimB
5 eqid TopOpenfld𝑡S=TopOpenfld𝑡S
6 eqid TopOpenfld=TopOpenfld
7 eqid zABFzFBzB=zABFzFBzB
8 5 6 7 1 2 3 eldv φBFSCBintTopOpenfld𝑡SACzABFzFBzBlimB
9 8 simplbda φBFSCCzABFzFBzBlimB
10 4 9 sselid φBFSCC