Metamath Proof Explorer


Theorem dvcosre

Description: The real derivative of the cosine. (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Assertion dvcosre dxcosxdx=xsinx

Proof

Step Hyp Ref Expression
1 reelprrecn
2 cosf cos:
3 ssid
4 nfcv _x
5 nfrab1 _xx|sinxV
6 4 5 dfss2f x|sinxVxxxx|sinxV
7 recn xx
8 7 sincld xsinx
9 8 negcld xsinx
10 elex sinxsinxV
11 9 10 syl xsinxV
12 rabid xx|sinxVxsinxV
13 7 11 12 sylanbrc xxx|sinxV
14 6 13 mpgbir x|sinxV
15 dvcos Dcos=xsinx
16 15 dmmpt domcos=x|sinxV
17 14 16 sseqtrri domcos
18 dvres3 cos:domcosDcos=cos
19 1 2 3 17 18 mp4an Dcos=cos
20 ffn cos:cosFn
21 2 20 ax-mp cosFn
22 dffn5 cosFncos=xcosx
23 21 22 mpbi cos=xcosx
24 23 reseq1i cos=xcosx
25 ax-resscn
26 resmpt xcosx=xcosx
27 25 26 ax-mp xcosx=xcosx
28 24 27 eqtri cos=xcosx
29 28 oveq2i Dcos=dxcosxdx
30 15 reseq1i cos=xsinx
31 resmpt xsinx=xsinx
32 25 31 ax-mp xsinx=xsinx
33 30 32 eqtri cos=xsinx
34 19 29 33 3eqtr3i dxcosxdx=xsinx