Metamath Proof Explorer


Theorem dvdsaddre2b

Description: Adding a multiple of the base does not affect divisibility. Variant of dvdsadd2b only requiring B to be a real number (not necessarily an integer). (Contributed by AV, 19-Jul-2021)

Ref Expression
Assertion dvdsaddre2b ABCACABAC+B

Proof

Step Hyp Ref Expression
1 dvdsadd2b ABCACABAC+B
2 1 a1d ABCACBABAC+B
3 2 3exp ABCACBABAC+B
4 3 com24 ABCACBABAC+B
5 4 3imp ABCACBABAC+B
6 5 com12 BABCACABAC+B
7 dvdszrcl ABAB
8 pm2.24 B¬BAC+B
9 7 8 simpl2im AB¬BAC+B
10 9 com12 ¬BABAC+B
11 10 adantr ¬BABCACABAC+B
12 dvdszrcl AC+BAC+B
13 zcn CC
14 13 adantr CB¬BC
15 recn BB
16 15 ad2antrl CB¬BB
17 14 16 addcomd CB¬BC+B=B+C
18 eldif BB¬B
19 nzadd BCB+C
20 19 eldifbd BC¬B+C
21 20 expcom CB¬B+C
22 18 21 biimtrrid CB¬B¬B+C
23 22 imp CB¬B¬B+C
24 17 23 eqneltrd CB¬B¬C+B
25 24 exp32 CB¬B¬C+B
26 pm2.21 ¬C+BC+BAB
27 25 26 syl8 CB¬BC+BAB
28 27 adantr CACB¬BC+BAB
29 28 com12 BCAC¬BC+BAB
30 29 a1i ABCAC¬BC+BAB
31 30 3imp ABCAC¬BC+BAB
32 31 impcom ¬BABCACC+BAB
33 32 com12 C+B¬BABCACAB
34 12 33 simpl2im AC+B¬BABCACAB
35 34 com12 ¬BABCACAC+BAB
36 11 35 impbid ¬BABCACABAC+B
37 36 ex ¬BABCACABAC+B
38 6 37 pm2.61i ABCACABAC+B