Metamath Proof Explorer


Theorem dvdsrmul1

Description: The divisibility relation is preserved under right-multiplication. (Contributed by Mario Carneiro, 1-Dec-2014)

Ref Expression
Hypotheses dvdsr.1 B=BaseR
dvdsr.2 ˙=rR
dvdsrmul1.3 ·˙=R
Assertion dvdsrmul1 RRingZBX˙YX·˙Z˙Y·˙Z

Proof

Step Hyp Ref Expression
1 dvdsr.1 B=BaseR
2 dvdsr.2 ˙=rR
3 dvdsrmul1.3 ·˙=R
4 1 2 3 dvdsr X˙YXBxBx·˙X=Y
5 simplll RRingZBXBxBRRing
6 simplr RRingZBXBxBXB
7 simpllr RRingZBXBxBZB
8 1 3 ringcl RRingXBZBX·˙ZB
9 5 6 7 8 syl3anc RRingZBXBxBX·˙ZB
10 1 2 3 dvdsrmul X·˙ZBxBX·˙Z˙x·˙X·˙Z
11 9 10 sylancom RRingZBXBxBX·˙Z˙x·˙X·˙Z
12 simpr RRingZBXBxBxB
13 1 3 ringass RRingxBXBZBx·˙X·˙Z=x·˙X·˙Z
14 5 12 6 7 13 syl13anc RRingZBXBxBx·˙X·˙Z=x·˙X·˙Z
15 11 14 breqtrrd RRingZBXBxBX·˙Z˙x·˙X·˙Z
16 oveq1 x·˙X=Yx·˙X·˙Z=Y·˙Z
17 16 breq2d x·˙X=YX·˙Z˙x·˙X·˙ZX·˙Z˙Y·˙Z
18 15 17 syl5ibcom RRingZBXBxBx·˙X=YX·˙Z˙Y·˙Z
19 18 rexlimdva RRingZBXBxBx·˙X=YX·˙Z˙Y·˙Z
20 19 expimpd RRingZBXBxBx·˙X=YX·˙Z˙Y·˙Z
21 4 20 biimtrid RRingZBX˙YX·˙Z˙Y·˙Z
22 21 3impia RRingZBX˙YX·˙Z˙Y·˙Z