Metamath Proof Explorer


Theorem dvdsrpropd

Description: The divisibility relation depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014)

Ref Expression
Hypotheses rngidpropd.1 φB=BaseK
rngidpropd.2 φB=BaseL
rngidpropd.3 φxByBxKy=xLy
Assertion dvdsrpropd φrK=rL

Proof

Step Hyp Ref Expression
1 rngidpropd.1 φB=BaseK
2 rngidpropd.2 φB=BaseL
3 rngidpropd.3 φxByBxKy=xLy
4 3 anassrs φxByBxKy=xLy
5 4 eqeq1d φxByBxKy=zxLy=z
6 5 an32s φyBxBxKy=zxLy=z
7 6 rexbidva φyBxBxKy=zxBxLy=z
8 7 pm5.32da φyBxBxKy=zyBxBxLy=z
9 1 eleq2d φyByBaseK
10 1 rexeqdv φxBxKy=zxBaseKxKy=z
11 9 10 anbi12d φyBxBxKy=zyBaseKxBaseKxKy=z
12 2 eleq2d φyByBaseL
13 2 rexeqdv φxBxLy=zxBaseLxLy=z
14 12 13 anbi12d φyBxBxLy=zyBaseLxBaseLxLy=z
15 8 11 14 3bitr3d φyBaseKxBaseKxKy=zyBaseLxBaseLxLy=z
16 15 opabbidv φyz|yBaseKxBaseKxKy=z=yz|yBaseLxBaseLxLy=z
17 eqid BaseK=BaseK
18 eqid rK=rK
19 eqid K=K
20 17 18 19 dvdsrval rK=yz|yBaseKxBaseKxKy=z
21 eqid BaseL=BaseL
22 eqid rL=rL
23 eqid L=L
24 21 22 23 dvdsrval rL=yz|yBaseLxBaseLxLy=z
25 16 20 24 3eqtr4g φrK=rL