Description: Ring divisibility in the ring of integers corresponds to ordinary divisibility in ZZ . (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by AV, 9-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | dvdsrzring | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl | |
|
2 | 1 | anim1i | |
3 | simpl | |
|
4 | zmulcl | |
|
5 | 4 | ancoms | |
6 | eleq1 | |
|
7 | 5 6 | syl5ibcom | |
8 | 7 | rexlimdva | |
9 | 8 | imp | |
10 | simpr | |
|
11 | 3 9 10 | jca31 | |
12 | 2 11 | impbii | |
13 | 12 | opabbii | |
14 | df-dvds | |
|
15 | zringbas | |
|
16 | eqid | |
|
17 | zringmulr | |
|
18 | 15 16 17 | dvdsrval | |
19 | 13 14 18 | 3eqtr4i | |