Metamath Proof Explorer


Theorem dvdsrzring

Description: Ring divisibility in the ring of integers corresponds to ordinary divisibility in ZZ . (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by AV, 9-Jun-2019)

Ref Expression
Assertion dvdsrzring =rring

Proof

Step Hyp Ref Expression
1 simpl xyx
2 1 anim1i xyzzx=yxzzx=y
3 simpl xzzx=yx
4 zmulcl zxzx
5 4 ancoms xzzx
6 eleq1 zx=yzxy
7 5 6 syl5ibcom xzzx=yy
8 7 rexlimdva xzzx=yy
9 8 imp xzzx=yy
10 simpr xzzx=yzzx=y
11 3 9 10 jca31 xzzx=yxyzzx=y
12 2 11 impbii xyzzx=yxzzx=y
13 12 opabbii xy|xyzzx=y=xy|xzzx=y
14 df-dvds =xy|xyzzx=y
15 zringbas =Basering
16 eqid rring=rring
17 zringmulr ×=ring
18 15 16 17 dvdsrval rring=xy|xzzx=y
19 13 14 18 3eqtr4i =rring