Metamath Proof Explorer


Theorem dvhbase

Description: The ring base set of the constructed full vector space H. (Contributed by NM, 29-Oct-2013) (Revised by Mario Carneiro, 22-Jun-2014)

Ref Expression
Hypotheses dvhbase.h H=LHypK
dvhbase.e E=TEndoKW
dvhbase.u U=DVecHKW
dvhbase.f F=ScalarU
dvhbase.c C=BaseF
Assertion dvhbase KXWHC=E

Proof

Step Hyp Ref Expression
1 dvhbase.h H=LHypK
2 dvhbase.e E=TEndoKW
3 dvhbase.u U=DVecHKW
4 dvhbase.f F=ScalarU
5 dvhbase.c C=BaseF
6 eqid EDRingKW=EDRingKW
7 1 6 3 4 dvhsca KXWHF=EDRingKW
8 7 fveq2d KXWHBaseF=BaseEDRingKW
9 5 8 eqtrid KXWHC=BaseEDRingKW
10 eqid LTrnKW=LTrnKW
11 eqid BaseEDRingKW=BaseEDRingKW
12 1 10 2 6 11 erngbase KXWHBaseEDRingKW=E
13 9 12 eqtrd KXWHC=E