Metamath Proof Explorer


Theorem dvhelvbasei

Description: Vector membership in the constructed full vector space H. (Contributed by NM, 20-Feb-2014)

Ref Expression
Hypotheses dvhvbase.h H=LHypK
dvhvbase.t T=LTrnKW
dvhvbase.e E=TEndoKW
dvhvbase.u U=DVecHKW
dvhvbase.v V=BaseU
Assertion dvhelvbasei KXWHFTSEFSV

Proof

Step Hyp Ref Expression
1 dvhvbase.h H=LHypK
2 dvhvbase.t T=LTrnKW
3 dvhvbase.e E=TEndoKW
4 dvhvbase.u U=DVecHKW
5 dvhvbase.v V=BaseU
6 opelxpi FTSEFST×E
7 6 adantl KXWHFTSEFST×E
8 1 2 3 4 5 dvhvbase KXWHV=T×E
9 8 adantr KXWHFTSEV=T×E
10 7 9 eleqtrrd KXWHFTSEFSV