Description: The product rule for derivatives at a point. For the (more general) relation version, see dvmulbr . (Contributed by Mario Carneiro, 9-Aug-2014) (Revised by Mario Carneiro, 10-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dvadd.f | |
|
dvadd.x | |
||
dvadd.g | |
||
dvadd.y | |
||
dvadd.s | |
||
dvadd.df | |
||
dvadd.dg | |
||
Assertion | dvmul | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvadd.f | |
|
2 | dvadd.x | |
|
3 | dvadd.g | |
|
4 | dvadd.y | |
|
5 | dvadd.s | |
|
6 | dvadd.df | |
|
7 | dvadd.dg | |
|
8 | dvfg | |
|
9 | ffun | |
|
10 | 5 8 9 | 3syl | |
11 | recnprss | |
|
12 | 5 11 | syl | |
13 | dvfg | |
|
14 | ffun | |
|
15 | funfvbrb | |
|
16 | 5 13 14 15 | 4syl | |
17 | 6 16 | mpbid | |
18 | dvfg | |
|
19 | ffun | |
|
20 | funfvbrb | |
|
21 | 5 18 19 20 | 4syl | |
22 | 7 21 | mpbid | |
23 | eqid | |
|
24 | 1 2 3 4 12 17 22 23 | dvmulbr | |
25 | funbrfv | |
|
26 | 10 24 25 | sylc | |