Description: The sum rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 9-Aug-2014) (Revised by Mario Carneiro, 10-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dvaddf.s | |
|
dvaddf.f | |
||
dvaddf.g | |
||
dvaddf.df | |
||
dvaddf.dg | |
||
Assertion | dvaddf | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvaddf.s | |
|
2 | dvaddf.f | |
|
3 | dvaddf.g | |
|
4 | dvaddf.df | |
|
5 | dvaddf.dg | |
|
6 | dvbsss | |
|
7 | 4 6 | eqsstrrdi | |
8 | 1 7 | ssexd | |
9 | dvfg | |
|
10 | 1 9 | syl | |
11 | 4 | feq2d | |
12 | 10 11 | mpbid | |
13 | 12 | ffnd | |
14 | dvfg | |
|
15 | 1 14 | syl | |
16 | 5 | feq2d | |
17 | 15 16 | mpbid | |
18 | 17 | ffnd | |
19 | dvfg | |
|
20 | 1 19 | syl | |
21 | recnprss | |
|
22 | 1 21 | syl | |
23 | addcl | |
|
24 | 23 | adantl | |
25 | inidm | |
|
26 | 24 2 3 8 8 25 | off | |
27 | 22 26 7 | dvbss | |
28 | 2 | adantr | |
29 | 7 | adantr | |
30 | 3 | adantr | |
31 | 22 | adantr | |
32 | 4 | eleq2d | |
33 | 32 | biimpar | |
34 | 1 | adantr | |
35 | ffun | |
|
36 | funfvbrb | |
|
37 | 34 9 35 36 | 4syl | |
38 | 33 37 | mpbid | |
39 | 5 | eleq2d | |
40 | 39 | biimpar | |
41 | ffun | |
|
42 | funfvbrb | |
|
43 | 34 14 41 42 | 4syl | |
44 | 40 43 | mpbid | |
45 | eqid | |
|
46 | 28 29 30 29 31 38 44 45 | dvaddbr | |
47 | reldv | |
|
48 | 47 | releldmi | |
49 | 46 48 | syl | |
50 | 27 49 | eqelssd | |
51 | 50 | feq2d | |
52 | 20 51 | mpbid | |
53 | 52 | ffnd | |
54 | eqidd | |
|
55 | eqidd | |
|
56 | 28 29 30 29 34 33 40 | dvadd | |
57 | 56 | eqcomd | |
58 | 8 13 18 53 54 55 57 | offveq | |
59 | 58 | eqcomd | |