| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvaddf.s |
|
| 2 |
|
dvaddf.f |
|
| 3 |
|
dvaddf.g |
|
| 4 |
|
dvaddf.df |
|
| 5 |
|
dvaddf.dg |
|
| 6 |
|
dvbsss |
|
| 7 |
4 6
|
eqsstrrdi |
|
| 8 |
1 7
|
ssexd |
|
| 9 |
|
dvfg |
|
| 10 |
1 9
|
syl |
|
| 11 |
4
|
feq2d |
|
| 12 |
10 11
|
mpbid |
|
| 13 |
12
|
ffnd |
|
| 14 |
|
dvfg |
|
| 15 |
1 14
|
syl |
|
| 16 |
5
|
feq2d |
|
| 17 |
15 16
|
mpbid |
|
| 18 |
17
|
ffnd |
|
| 19 |
|
dvfg |
|
| 20 |
1 19
|
syl |
|
| 21 |
|
recnprss |
|
| 22 |
1 21
|
syl |
|
| 23 |
|
addcl |
|
| 24 |
23
|
adantl |
|
| 25 |
|
inidm |
|
| 26 |
24 2 3 8 8 25
|
off |
|
| 27 |
22 26 7
|
dvbss |
|
| 28 |
2
|
adantr |
|
| 29 |
7
|
adantr |
|
| 30 |
3
|
adantr |
|
| 31 |
22
|
adantr |
|
| 32 |
4
|
eleq2d |
|
| 33 |
32
|
biimpar |
|
| 34 |
1
|
adantr |
|
| 35 |
|
ffun |
|
| 36 |
|
funfvbrb |
|
| 37 |
34 9 35 36
|
4syl |
|
| 38 |
33 37
|
mpbid |
|
| 39 |
5
|
eleq2d |
|
| 40 |
39
|
biimpar |
|
| 41 |
|
ffun |
|
| 42 |
|
funfvbrb |
|
| 43 |
34 14 41 42
|
4syl |
|
| 44 |
40 43
|
mpbid |
|
| 45 |
|
eqid |
|
| 46 |
28 29 30 29 31 38 44 45
|
dvaddbr |
|
| 47 |
|
reldv |
|
| 48 |
47
|
releldmi |
|
| 49 |
46 48
|
syl |
|
| 50 |
27 49
|
eqelssd |
|
| 51 |
50
|
feq2d |
|
| 52 |
20 51
|
mpbid |
|
| 53 |
52
|
ffnd |
|
| 54 |
|
eqidd |
|
| 55 |
|
eqidd |
|
| 56 |
28 29 30 29 34 33 40
|
dvadd |
|
| 57 |
56
|
eqcomd |
|
| 58 |
8 13 18 53 54 55 57
|
offveq |
|
| 59 |
58
|
eqcomd |
|