Metamath Proof Explorer


Theorem dvaddf

Description: The sum rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 9-Aug-2014) (Revised by Mario Carneiro, 10-Feb-2015)

Ref Expression
Hypotheses dvaddf.s φS
dvaddf.f φF:X
dvaddf.g φG:X
dvaddf.df φdomFS=X
dvaddf.dg φdomGS=X
Assertion dvaddf φSDF+fG=FS+fGS

Proof

Step Hyp Ref Expression
1 dvaddf.s φS
2 dvaddf.f φF:X
3 dvaddf.g φG:X
4 dvaddf.df φdomFS=X
5 dvaddf.dg φdomGS=X
6 dvbsss domFSS
7 4 6 eqsstrrdi φXS
8 1 7 ssexd φXV
9 dvfg SFS:domFS
10 1 9 syl φFS:domFS
11 4 feq2d φFS:domFSFS:X
12 10 11 mpbid φFS:X
13 12 ffnd φFSFnX
14 dvfg SGS:domGS
15 1 14 syl φGS:domGS
16 5 feq2d φGS:domGSGS:X
17 15 16 mpbid φGS:X
18 17 ffnd φGSFnX
19 dvfg SF+fGS:domF+fGS
20 1 19 syl φF+fGS:domF+fGS
21 recnprss SS
22 1 21 syl φS
23 addcl xyx+y
24 23 adantl φxyx+y
25 inidm XX=X
26 24 2 3 8 8 25 off φF+fG:X
27 22 26 7 dvbss φdomF+fGSX
28 2 adantr φxXF:X
29 7 adantr φxXXS
30 3 adantr φxXG:X
31 22 adantr φxXS
32 4 eleq2d φxdomFSxX
33 32 biimpar φxXxdomFS
34 1 adantr φxXS
35 ffun FS:domFSFunFS
36 funfvbrb FunFSxdomFSxFSFSx
37 34 9 35 36 4syl φxXxdomFSxFSFSx
38 33 37 mpbid φxXxFSFSx
39 5 eleq2d φxdomGSxX
40 39 biimpar φxXxdomGS
41 ffun GS:domGSFunGS
42 funfvbrb FunGSxdomGSxGSGSx
43 34 14 41 42 4syl φxXxdomGSxGSGSx
44 40 43 mpbid φxXxGSGSx
45 eqid TopOpenfld=TopOpenfld
46 28 29 30 29 31 38 44 45 dvaddbr φxXxF+fGSFSx+GSx
47 reldv RelF+fGS
48 47 releldmi xF+fGSFSx+GSxxdomF+fGS
49 46 48 syl φxXxdomF+fGS
50 27 49 eqelssd φdomF+fGS=X
51 50 feq2d φF+fGS:domF+fGSF+fGS:X
52 20 51 mpbid φF+fGS:X
53 52 ffnd φF+fGSFnX
54 eqidd φxXFSx=FSx
55 eqidd φxXGSx=GSx
56 28 29 30 29 34 33 40 dvadd φxXF+fGSx=FSx+GSx
57 56 eqcomd φxXFSx+GSx=F+fGSx
58 8 13 18 53 54 55 57 offveq φFS+fGS=SDF+fG
59 58 eqcomd φSDF+fG=FS+fGS