Metamath Proof Explorer


Theorem dvaddbr

Description: The sum rule for derivatives at a point. For the (simpler but more limited) function version, see dvadd . (Contributed by Mario Carneiro, 9-Aug-2014) (Revised by Mario Carneiro, 28-Dec-2016) Remove unnecessary hypotheses. (Revised by GG, 10-Apr-2025)

Ref Expression
Hypotheses dvadd.f φF:X
dvadd.x φXS
dvadd.g φG:Y
dvadd.y φYS
dvaddbr.s φS
dvadd.bf φCFSK
dvadd.bg φCGSL
dvadd.j J=TopOpenfld
Assertion dvaddbr φCF+fGSK+L

Proof

Step Hyp Ref Expression
1 dvadd.f φF:X
2 dvadd.x φXS
3 dvadd.g φG:Y
4 dvadd.y φYS
5 dvaddbr.s φS
6 dvadd.bf φCFSK
7 dvadd.bg φCGSL
8 dvadd.j J=TopOpenfld
9 eqid J𝑡S=J𝑡S
10 eqid zXCFzFCzC=zXCFzFCzC
11 9 8 10 5 1 2 eldv φCFSKCintJ𝑡SXKzXCFzFCzClimC
12 6 11 mpbid φCintJ𝑡SXKzXCFzFCzClimC
13 12 simpld φCintJ𝑡SX
14 eqid zYCGzGCzC=zYCGzGCzC
15 9 8 14 5 3 4 eldv φCGSLCintJ𝑡SYLzYCGzGCzClimC
16 7 15 mpbid φCintJ𝑡SYLzYCGzGCzClimC
17 16 simpld φCintJ𝑡SY
18 13 17 elind φCintJ𝑡SXintJ𝑡SY
19 8 cnfldtopon JTopOn
20 resttopon JTopOnSJ𝑡STopOnS
21 19 5 20 sylancr φJ𝑡STopOnS
22 topontop J𝑡STopOnSJ𝑡STop
23 21 22 syl φJ𝑡STop
24 toponuni J𝑡STopOnSS=J𝑡S
25 21 24 syl φS=J𝑡S
26 2 25 sseqtrd φXJ𝑡S
27 4 25 sseqtrd φYJ𝑡S
28 eqid J𝑡S=J𝑡S
29 28 ntrin J𝑡STopXJ𝑡SYJ𝑡SintJ𝑡SXY=intJ𝑡SXintJ𝑡SY
30 23 26 27 29 syl3anc φintJ𝑡SXY=intJ𝑡SXintJ𝑡SY
31 18 30 eleqtrrd φCintJ𝑡SXY
32 inss1 XYX
33 ssdif XYXXYCXC
34 32 33 mp1i φXYCXC
35 34 sselda φzXYCzXC
36 2 5 sstrd φX
37 28 ntrss2 J𝑡STopXJ𝑡SintJ𝑡SXX
38 23 26 37 syl2anc φintJ𝑡SXX
39 38 13 sseldd φCX
40 1 36 39 dvlem φzXCFzFCzC
41 35 40 syldan φzXYCFzFCzC
42 inss2 XYY
43 ssdif XYYXYCYC
44 42 43 mp1i φXYCYC
45 44 sselda φzXYCzYC
46 4 5 sstrd φY
47 28 ntrss2 J𝑡STopYJ𝑡SintJ𝑡SYY
48 23 27 47 syl2anc φintJ𝑡SYY
49 48 17 sseldd φCY
50 3 46 49 dvlem φzYCGzGCzC
51 45 50 syldan φzXYCGzGCzC
52 ssidd φ
53 txtopon JTopOnJTopOnJ×tJTopOn×
54 19 19 53 mp2an J×tJTopOn×
55 54 toponrestid J×tJ=J×tJ𝑡×
56 12 simprd φKzXCFzFCzClimC
57 40 fmpttd φzXCFzFCzC:XC
58 36 ssdifssd φXC
59 eqid J𝑡XCC=J𝑡XCC
60 32 2 sstrid φXYS
61 60 25 sseqtrd φXYJ𝑡S
62 difssd φJ𝑡SXJ𝑡S
63 61 62 unssd φXYJ𝑡SXJ𝑡S
64 ssun1 XYXYJ𝑡SX
65 64 a1i φXYXYJ𝑡SX
66 28 ntrss J𝑡STopXYJ𝑡SXJ𝑡SXYXYJ𝑡SXintJ𝑡SXYintJ𝑡SXYJ𝑡SX
67 23 63 65 66 syl3anc φintJ𝑡SXYintJ𝑡SXYJ𝑡SX
68 67 31 sseldd φCintJ𝑡SXYJ𝑡SX
69 68 39 elind φCintJ𝑡SXYJ𝑡SXX
70 32 a1i φXYX
71 eqid J𝑡S𝑡X=J𝑡S𝑡X
72 28 71 restntr J𝑡STopXJ𝑡SXYXintJ𝑡S𝑡XXY=intJ𝑡SXYJ𝑡SXX
73 23 26 70 72 syl3anc φintJ𝑡S𝑡XXY=intJ𝑡SXYJ𝑡SXX
74 8 cnfldtop JTop
75 74 a1i φJTop
76 cnex V
77 ssexg SVSV
78 5 76 77 sylancl φSV
79 restabs JTopXSSVJ𝑡S𝑡X=J𝑡X
80 75 2 78 79 syl3anc φJ𝑡S𝑡X=J𝑡X
81 80 fveq2d φintJ𝑡S𝑡X=intJ𝑡X
82 81 fveq1d φintJ𝑡S𝑡XXY=intJ𝑡XXY
83 73 82 eqtr3d φintJ𝑡SXYJ𝑡SXX=intJ𝑡XXY
84 69 83 eleqtrd φCintJ𝑡XXY
85 undif1 XCC=XC
86 39 snssd φCX
87 ssequn2 CXXC=X
88 86 87 sylib φXC=X
89 85 88 eqtrid φXCC=X
90 89 oveq2d φJ𝑡XCC=J𝑡X
91 90 fveq2d φintJ𝑡XCC=intJ𝑡X
92 undif1 XYCC=XYC
93 39 49 elind φCXY
94 93 snssd φCXY
95 ssequn2 CXYXYC=XY
96 94 95 sylib φXYC=XY
97 92 96 eqtrid φXYCC=XY
98 91 97 fveq12d φintJ𝑡XCCXYCC=intJ𝑡XXY
99 84 98 eleqtrrd φCintJ𝑡XCCXYCC
100 57 34 58 8 59 99 limcres φzXCFzFCzCXYClimC=zXCFzFCzClimC
101 34 resmptd φzXCFzFCzCXYC=zXYCFzFCzC
102 101 oveq1d φzXCFzFCzCXYClimC=zXYCFzFCzClimC
103 100 102 eqtr3d φzXCFzFCzClimC=zXYCFzFCzClimC
104 56 103 eleqtrd φKzXYCFzFCzClimC
105 16 simprd φLzYCGzGCzClimC
106 50 fmpttd φzYCGzGCzC:YC
107 46 ssdifssd φYC
108 eqid J𝑡YCC=J𝑡YCC
109 difssd φJ𝑡SYJ𝑡S
110 61 109 unssd φXYJ𝑡SYJ𝑡S
111 ssun1 XYXYJ𝑡SY
112 111 a1i φXYXYJ𝑡SY
113 28 ntrss J𝑡STopXYJ𝑡SYJ𝑡SXYXYJ𝑡SYintJ𝑡SXYintJ𝑡SXYJ𝑡SY
114 23 110 112 113 syl3anc φintJ𝑡SXYintJ𝑡SXYJ𝑡SY
115 114 31 sseldd φCintJ𝑡SXYJ𝑡SY
116 115 49 elind φCintJ𝑡SXYJ𝑡SYY
117 42 a1i φXYY
118 eqid J𝑡S𝑡Y=J𝑡S𝑡Y
119 28 118 restntr J𝑡STopYJ𝑡SXYYintJ𝑡S𝑡YXY=intJ𝑡SXYJ𝑡SYY
120 23 27 117 119 syl3anc φintJ𝑡S𝑡YXY=intJ𝑡SXYJ𝑡SYY
121 restabs JTopYSSVJ𝑡S𝑡Y=J𝑡Y
122 75 4 78 121 syl3anc φJ𝑡S𝑡Y=J𝑡Y
123 122 fveq2d φintJ𝑡S𝑡Y=intJ𝑡Y
124 123 fveq1d φintJ𝑡S𝑡YXY=intJ𝑡YXY
125 120 124 eqtr3d φintJ𝑡SXYJ𝑡SYY=intJ𝑡YXY
126 116 125 eleqtrd φCintJ𝑡YXY
127 undif1 YCC=YC
128 49 snssd φCY
129 ssequn2 CYYC=Y
130 128 129 sylib φYC=Y
131 127 130 eqtrid φYCC=Y
132 131 oveq2d φJ𝑡YCC=J𝑡Y
133 132 fveq2d φintJ𝑡YCC=intJ𝑡Y
134 133 97 fveq12d φintJ𝑡YCCXYCC=intJ𝑡YXY
135 126 134 eleqtrrd φCintJ𝑡YCCXYCC
136 106 44 107 8 108 135 limcres φzYCGzGCzCXYClimC=zYCGzGCzClimC
137 44 resmptd φzYCGzGCzCXYC=zXYCGzGCzC
138 137 oveq1d φzYCGzGCzCXYClimC=zXYCGzGCzClimC
139 136 138 eqtr3d φzYCGzGCzClimC=zXYCGzGCzClimC
140 105 139 eleqtrd φLzXYCGzGCzClimC
141 8 addcn +J×tJCnJ
142 5 1 2 dvcl φCFSKK
143 6 142 mpdan φK
144 5 3 4 dvcl φCGSLL
145 7 144 mpdan φL
146 143 145 opelxpd φKL×
147 54 toponunii ×=J×tJ
148 147 cncnpi +J×tJCnJKL×+J×tJCnPJKL
149 141 146 148 sylancr φ+J×tJCnPJKL
150 41 51 52 52 8 55 104 140 149 limccnp2 φK+LzXYCFzFCzC+GzGCzClimC
151 eldifi zXYCzXY
152 151 adantl φzXYCzXY
153 1 ffnd φFFnX
154 153 adantr φzXYCFFnX
155 3 ffnd φGFnY
156 155 adantr φzXYCGFnY
157 ssexg XVXV
158 36 76 157 sylancl φXV
159 158 adantr φzXYCXV
160 ssexg YVYV
161 46 76 160 sylancl φYV
162 161 adantr φzXYCYV
163 eqid XY=XY
164 eqidd φzXYCzXFz=Fz
165 eqidd φzXYCzYGz=Gz
166 154 156 159 162 163 164 165 ofval φzXYCzXYF+fGz=Fz+Gz
167 152 166 mpdan φzXYCF+fGz=Fz+Gz
168 eqidd φzXYCCXFC=FC
169 eqidd φzXYCCYGC=GC
170 154 156 159 162 163 168 169 ofval φzXYCCXYF+fGC=FC+GC
171 93 170 mpidan φzXYCF+fGC=FC+GC
172 167 171 oveq12d φzXYCF+fGzF+fGC=Fz+Gz-FC+GC
173 difss XYCXY
174 173 32 sstri XYCX
175 174 sseli zXYCzX
176 ffvelcdm F:XzXFz
177 1 175 176 syl2an φzXYCFz
178 173 42 sstri XYCY
179 178 sseli zXYCzY
180 ffvelcdm G:YzYGz
181 3 179 180 syl2an φzXYCGz
182 1 39 ffvelcdmd φFC
183 182 adantr φzXYCFC
184 3 49 ffvelcdmd φGC
185 184 adantr φzXYCGC
186 177 181 183 185 addsub4d φzXYCFz+Gz-FC+GC=FzFC+Gz-GC
187 172 186 eqtrd φzXYCF+fGzF+fGC=FzFC+Gz-GC
188 187 oveq1d φzXYCF+fGzF+fGCzC=FzFC+Gz-GCzC
189 177 183 subcld φzXYCFzFC
190 181 185 subcld φzXYCGzGC
191 174 36 sstrid φXYC
192 191 sselda φzXYCz
193 36 39 sseldd φC
194 193 adantr φzXYCC
195 192 194 subcld φzXYCzC
196 eldifsni zXYCzC
197 196 adantl φzXYCzC
198 192 194 197 subne0d φzXYCzC0
199 189 190 195 198 divdird φzXYCFzFC+Gz-GCzC=FzFCzC+GzGCzC
200 188 199 eqtrd φzXYCF+fGzF+fGCzC=FzFCzC+GzGCzC
201 200 mpteq2dva φzXYCF+fGzF+fGCzC=zXYCFzFCzC+GzGCzC
202 201 oveq1d φzXYCF+fGzF+fGCzClimC=zXYCFzFCzC+GzGCzClimC
203 150 202 eleqtrrd φK+LzXYCF+fGzF+fGCzClimC
204 eqid zXYCF+fGzF+fGCzC=zXYCF+fGzF+fGCzC
205 addcl xyx+y
206 205 adantl φxyx+y
207 206 1 3 158 161 163 off φF+fG:XY
208 9 8 204 5 207 60 eldv φCF+fGSK+LCintJ𝑡SXYK+LzXYCF+fGzF+fGCzClimC
209 31 203 208 mpbir2and φCF+fGSK+L