| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvadd.f |
|
| 2 |
|
dvadd.x |
|
| 3 |
|
dvadd.g |
|
| 4 |
|
dvadd.y |
|
| 5 |
|
dvaddbr.s |
|
| 6 |
|
dvadd.bf |
|
| 7 |
|
dvadd.bg |
|
| 8 |
|
dvadd.j |
|
| 9 |
|
eqid |
|
| 10 |
|
eqid |
|
| 11 |
9 8 10 5 1 2
|
eldv |
|
| 12 |
6 11
|
mpbid |
|
| 13 |
12
|
simpld |
|
| 14 |
|
eqid |
|
| 15 |
9 8 14 5 3 4
|
eldv |
|
| 16 |
7 15
|
mpbid |
|
| 17 |
16
|
simpld |
|
| 18 |
13 17
|
elind |
|
| 19 |
8
|
cnfldtopon |
|
| 20 |
|
resttopon |
|
| 21 |
19 5 20
|
sylancr |
|
| 22 |
|
topontop |
|
| 23 |
21 22
|
syl |
|
| 24 |
|
toponuni |
|
| 25 |
21 24
|
syl |
|
| 26 |
2 25
|
sseqtrd |
|
| 27 |
4 25
|
sseqtrd |
|
| 28 |
|
eqid |
|
| 29 |
28
|
ntrin |
|
| 30 |
23 26 27 29
|
syl3anc |
|
| 31 |
18 30
|
eleqtrrd |
|
| 32 |
|
inss1 |
|
| 33 |
|
ssdif |
|
| 34 |
32 33
|
mp1i |
|
| 35 |
34
|
sselda |
|
| 36 |
2 5
|
sstrd |
|
| 37 |
28
|
ntrss2 |
|
| 38 |
23 26 37
|
syl2anc |
|
| 39 |
38 13
|
sseldd |
|
| 40 |
1 36 39
|
dvlem |
|
| 41 |
35 40
|
syldan |
|
| 42 |
|
inss2 |
|
| 43 |
|
ssdif |
|
| 44 |
42 43
|
mp1i |
|
| 45 |
44
|
sselda |
|
| 46 |
4 5
|
sstrd |
|
| 47 |
28
|
ntrss2 |
|
| 48 |
23 27 47
|
syl2anc |
|
| 49 |
48 17
|
sseldd |
|
| 50 |
3 46 49
|
dvlem |
|
| 51 |
45 50
|
syldan |
|
| 52 |
|
ssidd |
|
| 53 |
|
txtopon |
|
| 54 |
19 19 53
|
mp2an |
|
| 55 |
54
|
toponrestid |
|
| 56 |
12
|
simprd |
|
| 57 |
40
|
fmpttd |
|
| 58 |
36
|
ssdifssd |
|
| 59 |
|
eqid |
|
| 60 |
32 2
|
sstrid |
|
| 61 |
60 25
|
sseqtrd |
|
| 62 |
|
difssd |
|
| 63 |
61 62
|
unssd |
|
| 64 |
|
ssun1 |
|
| 65 |
64
|
a1i |
|
| 66 |
28
|
ntrss |
|
| 67 |
23 63 65 66
|
syl3anc |
|
| 68 |
67 31
|
sseldd |
|
| 69 |
68 39
|
elind |
|
| 70 |
32
|
a1i |
|
| 71 |
|
eqid |
|
| 72 |
28 71
|
restntr |
|
| 73 |
23 26 70 72
|
syl3anc |
|
| 74 |
8
|
cnfldtop |
|
| 75 |
74
|
a1i |
|
| 76 |
|
cnex |
|
| 77 |
|
ssexg |
|
| 78 |
5 76 77
|
sylancl |
|
| 79 |
|
restabs |
|
| 80 |
75 2 78 79
|
syl3anc |
|
| 81 |
80
|
fveq2d |
|
| 82 |
81
|
fveq1d |
|
| 83 |
73 82
|
eqtr3d |
|
| 84 |
69 83
|
eleqtrd |
|
| 85 |
|
undif1 |
|
| 86 |
39
|
snssd |
|
| 87 |
|
ssequn2 |
|
| 88 |
86 87
|
sylib |
|
| 89 |
85 88
|
eqtrid |
|
| 90 |
89
|
oveq2d |
|
| 91 |
90
|
fveq2d |
|
| 92 |
|
undif1 |
|
| 93 |
39 49
|
elind |
|
| 94 |
93
|
snssd |
|
| 95 |
|
ssequn2 |
|
| 96 |
94 95
|
sylib |
|
| 97 |
92 96
|
eqtrid |
|
| 98 |
91 97
|
fveq12d |
|
| 99 |
84 98
|
eleqtrrd |
|
| 100 |
57 34 58 8 59 99
|
limcres |
|
| 101 |
34
|
resmptd |
|
| 102 |
101
|
oveq1d |
|
| 103 |
100 102
|
eqtr3d |
|
| 104 |
56 103
|
eleqtrd |
|
| 105 |
16
|
simprd |
|
| 106 |
50
|
fmpttd |
|
| 107 |
46
|
ssdifssd |
|
| 108 |
|
eqid |
|
| 109 |
|
difssd |
|
| 110 |
61 109
|
unssd |
|
| 111 |
|
ssun1 |
|
| 112 |
111
|
a1i |
|
| 113 |
28
|
ntrss |
|
| 114 |
23 110 112 113
|
syl3anc |
|
| 115 |
114 31
|
sseldd |
|
| 116 |
115 49
|
elind |
|
| 117 |
42
|
a1i |
|
| 118 |
|
eqid |
|
| 119 |
28 118
|
restntr |
|
| 120 |
23 27 117 119
|
syl3anc |
|
| 121 |
|
restabs |
|
| 122 |
75 4 78 121
|
syl3anc |
|
| 123 |
122
|
fveq2d |
|
| 124 |
123
|
fveq1d |
|
| 125 |
120 124
|
eqtr3d |
|
| 126 |
116 125
|
eleqtrd |
|
| 127 |
|
undif1 |
|
| 128 |
49
|
snssd |
|
| 129 |
|
ssequn2 |
|
| 130 |
128 129
|
sylib |
|
| 131 |
127 130
|
eqtrid |
|
| 132 |
131
|
oveq2d |
|
| 133 |
132
|
fveq2d |
|
| 134 |
133 97
|
fveq12d |
|
| 135 |
126 134
|
eleqtrrd |
|
| 136 |
106 44 107 8 108 135
|
limcres |
|
| 137 |
44
|
resmptd |
|
| 138 |
137
|
oveq1d |
|
| 139 |
136 138
|
eqtr3d |
|
| 140 |
105 139
|
eleqtrd |
|
| 141 |
8
|
addcn |
|
| 142 |
5 1 2
|
dvcl |
|
| 143 |
6 142
|
mpdan |
|
| 144 |
5 3 4
|
dvcl |
|
| 145 |
7 144
|
mpdan |
|
| 146 |
143 145
|
opelxpd |
|
| 147 |
54
|
toponunii |
|
| 148 |
147
|
cncnpi |
|
| 149 |
141 146 148
|
sylancr |
|
| 150 |
41 51 52 52 8 55 104 140 149
|
limccnp2 |
|
| 151 |
|
eldifi |
|
| 152 |
151
|
adantl |
|
| 153 |
1
|
ffnd |
|
| 154 |
153
|
adantr |
|
| 155 |
3
|
ffnd |
|
| 156 |
155
|
adantr |
|
| 157 |
|
ssexg |
|
| 158 |
36 76 157
|
sylancl |
|
| 159 |
158
|
adantr |
|
| 160 |
|
ssexg |
|
| 161 |
46 76 160
|
sylancl |
|
| 162 |
161
|
adantr |
|
| 163 |
|
eqid |
|
| 164 |
|
eqidd |
|
| 165 |
|
eqidd |
|
| 166 |
154 156 159 162 163 164 165
|
ofval |
|
| 167 |
152 166
|
mpdan |
|
| 168 |
|
eqidd |
|
| 169 |
|
eqidd |
|
| 170 |
154 156 159 162 163 168 169
|
ofval |
|
| 171 |
93 170
|
mpidan |
|
| 172 |
167 171
|
oveq12d |
|
| 173 |
|
difss |
|
| 174 |
173 32
|
sstri |
|
| 175 |
174
|
sseli |
|
| 176 |
|
ffvelcdm |
|
| 177 |
1 175 176
|
syl2an |
|
| 178 |
173 42
|
sstri |
|
| 179 |
178
|
sseli |
|
| 180 |
|
ffvelcdm |
|
| 181 |
3 179 180
|
syl2an |
|
| 182 |
1 39
|
ffvelcdmd |
|
| 183 |
182
|
adantr |
|
| 184 |
3 49
|
ffvelcdmd |
|
| 185 |
184
|
adantr |
|
| 186 |
177 181 183 185
|
addsub4d |
|
| 187 |
172 186
|
eqtrd |
|
| 188 |
187
|
oveq1d |
|
| 189 |
177 183
|
subcld |
|
| 190 |
181 185
|
subcld |
|
| 191 |
174 36
|
sstrid |
|
| 192 |
191
|
sselda |
|
| 193 |
36 39
|
sseldd |
|
| 194 |
193
|
adantr |
|
| 195 |
192 194
|
subcld |
|
| 196 |
|
eldifsni |
|
| 197 |
196
|
adantl |
|
| 198 |
192 194 197
|
subne0d |
|
| 199 |
189 190 195 198
|
divdird |
|
| 200 |
188 199
|
eqtrd |
|
| 201 |
200
|
mpteq2dva |
|
| 202 |
201
|
oveq1d |
|
| 203 |
150 202
|
eleqtrrd |
|
| 204 |
|
eqid |
|
| 205 |
|
addcl |
|
| 206 |
205
|
adantl |
|
| 207 |
206 1 3 158 161 163
|
off |
|
| 208 |
9 8 204 5 207 60
|
eldv |
|
| 209 |
31 203 208
|
mpbir2and |
|