Metamath Proof Explorer


Theorem dvrass

Description: An associative law for division. ( divass analog.) (Contributed by Mario Carneiro, 4-Dec-2014)

Ref Expression
Hypotheses dvrass.b B=BaseR
dvrass.o U=UnitR
dvrass.d ×˙=/rR
dvrass.t ·˙=R
Assertion dvrass RRingXBYBZUX·˙Y×˙Z=X·˙Y×˙Z

Proof

Step Hyp Ref Expression
1 dvrass.b B=BaseR
2 dvrass.o U=UnitR
3 dvrass.d ×˙=/rR
4 dvrass.t ·˙=R
5 simpl RRingXBYBZURRing
6 simpr1 RRingXBYBZUXB
7 simpr2 RRingXBYBZUYB
8 simpr3 RRingXBYBZUZU
9 eqid invrR=invrR
10 2 9 1 ringinvcl RRingZUinvrRZB
11 5 8 10 syl2anc RRingXBYBZUinvrRZB
12 1 4 ringass RRingXBYBinvrRZBX·˙Y·˙invrRZ=X·˙Y·˙invrRZ
13 5 6 7 11 12 syl13anc RRingXBYBZUX·˙Y·˙invrRZ=X·˙Y·˙invrRZ
14 1 4 ringcl RRingXBYBX·˙YB
15 14 3adant3r3 RRingXBYBZUX·˙YB
16 1 4 2 9 3 dvrval X·˙YBZUX·˙Y×˙Z=X·˙Y·˙invrRZ
17 15 8 16 syl2anc RRingXBYBZUX·˙Y×˙Z=X·˙Y·˙invrRZ
18 1 4 2 9 3 dvrval YBZUY×˙Z=Y·˙invrRZ
19 7 8 18 syl2anc RRingXBYBZUY×˙Z=Y·˙invrRZ
20 19 oveq2d RRingXBYBZUX·˙Y×˙Z=X·˙Y·˙invrRZ
21 13 17 20 3eqtr4d RRingXBYBZUX·˙Y×˙Z=X·˙Y×˙Z