Metamath Proof Explorer


Theorem dvrcn

Description: The division function is continuous in a topological field. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypotheses dvrcn.j J=TopOpenR
dvrcn.d ×˙=/rR
dvrcn.u U=UnitR
Assertion dvrcn RTopDRing×˙J×tJ𝑡UCnJ

Proof

Step Hyp Ref Expression
1 dvrcn.j J=TopOpenR
2 dvrcn.d ×˙=/rR
3 dvrcn.u U=UnitR
4 eqid BaseR=BaseR
5 eqid R=R
6 eqid invrR=invrR
7 4 5 3 6 2 dvrfval ×˙=xBaseR,yUxRinvrRy
8 tdrgtrg RTopDRingRTopRing
9 tdrgtps RTopDRingRTopSp
10 4 1 istps RTopSpJTopOnBaseR
11 9 10 sylib RTopDRingJTopOnBaseR
12 4 3 unitss UBaseR
13 resttopon JTopOnBaseRUBaseRJ𝑡UTopOnU
14 11 12 13 sylancl RTopDRingJ𝑡UTopOnU
15 11 14 cnmpt1st RTopDRingxBaseR,yUxJ×tJ𝑡UCnJ
16 11 14 cnmpt2nd RTopDRingxBaseR,yUyJ×tJ𝑡UCnJ𝑡U
17 1 6 3 invrcn RTopDRinginvrRJ𝑡UCnJ
18 11 14 16 17 cnmpt21f RTopDRingxBaseR,yUinvrRyJ×tJ𝑡UCnJ
19 1 5 8 11 14 15 18 cnmpt2mulr RTopDRingxBaseR,yUxRinvrRyJ×tJ𝑡UCnJ
20 7 19 eqeltrid RTopDRing×˙J×tJ𝑡UCnJ