Description: A sufficient condition for the derivative of a product to be continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dvsubcncf.s | |
|
dvsubcncf.f | |
||
dvsubcncf.g | |
||
dvsubcncf.fdv | |
||
dvsubcncf.gdv | |
||
Assertion | dvsubcncf | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvsubcncf.s | |
|
2 | dvsubcncf.f | |
|
3 | dvsubcncf.g | |
|
4 | dvsubcncf.fdv | |
|
5 | dvsubcncf.gdv | |
|
6 | cncff | |
|
7 | fdm | |
|
8 | 4 6 7 | 3syl | |
9 | cncff | |
|
10 | fdm | |
|
11 | 5 9 10 | 3syl | |
12 | 1 2 3 8 11 | dvsubf | |
13 | 4 5 | subcncff | |
14 | 12 13 | eqeltrd | |