Metamath Proof Explorer


Theorem dvsubcncf

Description: A sufficient condition for the derivative of a product to be continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses dvsubcncf.s φS
dvsubcncf.f φF:X
dvsubcncf.g φG:X
dvsubcncf.fdv φFS:Xcn
dvsubcncf.gdv φGS:Xcn
Assertion dvsubcncf φFfGS:Xcn

Proof

Step Hyp Ref Expression
1 dvsubcncf.s φS
2 dvsubcncf.f φF:X
3 dvsubcncf.g φG:X
4 dvsubcncf.fdv φFS:Xcn
5 dvsubcncf.gdv φGS:Xcn
6 cncff FS:XcnFS:X
7 fdm FS:XdomFS=X
8 4 6 7 3syl φdomFS=X
9 cncff GS:XcnGS:X
10 fdm GS:XdomGS=X
11 5 9 10 3syl φdomGS=X
12 1 2 3 8 11 dvsubf φSDFfG=FSfGS
13 4 5 subcncff φFSfGS:Xcn
14 12 13 eqeltrd φFfGS:Xcn