Description: The subtraction rule for everywhere-differentiable functions. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dvsubf.s | |
|
dvsubf.f | |
||
dvsubf.g | |
||
dvsubf.fdv | |
||
dvsubf.gdv | |
||
Assertion | dvsubf | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvsubf.s | |
|
2 | dvsubf.f | |
|
3 | dvsubf.g | |
|
4 | dvsubf.fdv | |
|
5 | dvsubf.gdv | |
|
6 | 2 | ffvelcdmda | |
7 | dvfg | |
|
8 | 1 7 | syl | |
9 | 4 | feq2d | |
10 | 8 9 | mpbid | |
11 | 10 | ffvelcdmda | |
12 | 2 | feqmptd | |
13 | 12 | oveq2d | |
14 | 10 | feqmptd | |
15 | 13 14 | eqtr3d | |
16 | 3 | ffvelcdmda | |
17 | dvfg | |
|
18 | 1 17 | syl | |
19 | 5 | feq2d | |
20 | 18 19 | mpbid | |
21 | 20 | ffvelcdmda | |
22 | 3 | feqmptd | |
23 | 22 | oveq2d | |
24 | 20 | feqmptd | |
25 | 23 24 | eqtr3d | |
26 | 1 6 11 15 16 21 25 | dvmptsub | |
27 | ovex | |
|
28 | 27 | dmex | |
29 | 4 28 | eqeltrrdi | |
30 | 29 6 16 12 22 | offval2 | |
31 | 30 | oveq2d | |
32 | 29 11 21 14 24 | offval2 | |
33 | 26 31 32 | 3eqtr4d | |