Metamath Proof Explorer


Theorem dvsubf

Description: The subtraction rule for everywhere-differentiable functions. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses dvsubf.s φS
dvsubf.f φF:X
dvsubf.g φG:X
dvsubf.fdv φdomFS=X
dvsubf.gdv φdomGS=X
Assertion dvsubf φSDFfG=FSfGS

Proof

Step Hyp Ref Expression
1 dvsubf.s φS
2 dvsubf.f φF:X
3 dvsubf.g φG:X
4 dvsubf.fdv φdomFS=X
5 dvsubf.gdv φdomGS=X
6 2 ffvelcdmda φxXFx
7 dvfg SFS:domFS
8 1 7 syl φFS:domFS
9 4 feq2d φFS:domFSFS:X
10 8 9 mpbid φFS:X
11 10 ffvelcdmda φxXFSx
12 2 feqmptd φF=xXFx
13 12 oveq2d φSDF=dxXFxdSx
14 10 feqmptd φSDF=xXFSx
15 13 14 eqtr3d φdxXFxdSx=xXFSx
16 3 ffvelcdmda φxXGx
17 dvfg SGS:domGS
18 1 17 syl φGS:domGS
19 5 feq2d φGS:domGSGS:X
20 18 19 mpbid φGS:X
21 20 ffvelcdmda φxXGSx
22 3 feqmptd φG=xXGx
23 22 oveq2d φSDG=dxXGxdSx
24 20 feqmptd φSDG=xXGSx
25 23 24 eqtr3d φdxXGxdSx=xXGSx
26 1 6 11 15 16 21 25 dvmptsub φdxXFxGxdSx=xXFSxGSx
27 ovex SDFV
28 27 dmex domFSV
29 4 28 eqeltrrdi φXV
30 29 6 16 12 22 offval2 φFfG=xXFxGx
31 30 oveq2d φSDFfG=dxXFxGxdSx
32 29 11 21 14 24 offval2 φFSfGS=xXFSxGSx
33 26 31 32 3eqtr4d φSDFfG=FSfGS