Metamath Proof Explorer


Theorem ecovass

Description: Lemma used to transfer an associative law via an equivalence relation. (Contributed by NM, 31-Aug-1995) (Revised by David Abernethy, 4-Jun-2013)

Ref Expression
Hypotheses ecovass.1 D=S×S/˙
ecovass.2 xSySzSwSxy˙+˙zw˙=GH˙
ecovass.3 zSwSvSuSzw˙+˙vu˙=NQ˙
ecovass.4 GSHSvSuSGH˙+˙vu˙=JK˙
ecovass.5 xSySNSQSxy˙+˙NQ˙=LM˙
ecovass.6 xSySzSwSGSHS
ecovass.7 zSwSvSuSNSQS
ecovass.8 J=L
ecovass.9 K=M
Assertion ecovass ADBDCDA+˙B+˙C=A+˙B+˙C

Proof

Step Hyp Ref Expression
1 ecovass.1 D=S×S/˙
2 ecovass.2 xSySzSwSxy˙+˙zw˙=GH˙
3 ecovass.3 zSwSvSuSzw˙+˙vu˙=NQ˙
4 ecovass.4 GSHSvSuSGH˙+˙vu˙=JK˙
5 ecovass.5 xSySNSQSxy˙+˙NQ˙=LM˙
6 ecovass.6 xSySzSwSGSHS
7 ecovass.7 zSwSvSuSNSQS
8 ecovass.8 J=L
9 ecovass.9 K=M
10 oveq1 xy˙=Axy˙+˙zw˙=A+˙zw˙
11 10 oveq1d xy˙=Axy˙+˙zw˙+˙vu˙=A+˙zw˙+˙vu˙
12 oveq1 xy˙=Axy˙+˙zw˙+˙vu˙=A+˙zw˙+˙vu˙
13 11 12 eqeq12d xy˙=Axy˙+˙zw˙+˙vu˙=xy˙+˙zw˙+˙vu˙A+˙zw˙+˙vu˙=A+˙zw˙+˙vu˙
14 oveq2 zw˙=BA+˙zw˙=A+˙B
15 14 oveq1d zw˙=BA+˙zw˙+˙vu˙=A+˙B+˙vu˙
16 oveq1 zw˙=Bzw˙+˙vu˙=B+˙vu˙
17 16 oveq2d zw˙=BA+˙zw˙+˙vu˙=A+˙B+˙vu˙
18 15 17 eqeq12d zw˙=BA+˙zw˙+˙vu˙=A+˙zw˙+˙vu˙A+˙B+˙vu˙=A+˙B+˙vu˙
19 oveq2 vu˙=CA+˙B+˙vu˙=A+˙B+˙C
20 oveq2 vu˙=CB+˙vu˙=B+˙C
21 20 oveq2d vu˙=CA+˙B+˙vu˙=A+˙B+˙C
22 19 21 eqeq12d vu˙=CA+˙B+˙vu˙=A+˙B+˙vu˙A+˙B+˙C=A+˙B+˙C
23 opeq12 J=LK=MJK=LM
24 23 eceq1d J=LK=MJK˙=LM˙
25 8 9 24 mp2an JK˙=LM˙
26 2 oveq1d xSySzSwSxy˙+˙zw˙+˙vu˙=GH˙+˙vu˙
27 26 adantr xSySzSwSvSuSxy˙+˙zw˙+˙vu˙=GH˙+˙vu˙
28 6 4 sylan xSySzSwSvSuSGH˙+˙vu˙=JK˙
29 27 28 eqtrd xSySzSwSvSuSxy˙+˙zw˙+˙vu˙=JK˙
30 29 3impa xSySzSwSvSuSxy˙+˙zw˙+˙vu˙=JK˙
31 3 oveq2d zSwSvSuSxy˙+˙zw˙+˙vu˙=xy˙+˙NQ˙
32 31 adantl xSySzSwSvSuSxy˙+˙zw˙+˙vu˙=xy˙+˙NQ˙
33 7 5 sylan2 xSySzSwSvSuSxy˙+˙NQ˙=LM˙
34 32 33 eqtrd xSySzSwSvSuSxy˙+˙zw˙+˙vu˙=LM˙
35 34 3impb xSySzSwSvSuSxy˙+˙zw˙+˙vu˙=LM˙
36 25 30 35 3eqtr4a xSySzSwSvSuSxy˙+˙zw˙+˙vu˙=xy˙+˙zw˙+˙vu˙
37 1 13 18 22 36 3ecoptocl ADBDCDA+˙B+˙C=A+˙B+˙C