Metamath Proof Explorer


Theorem ecovdi

Description: Lemma used to transfer a distributive law via an equivalence relation. (Contributed by NM, 2-Sep-1995) (Revised by David Abernethy, 4-Jun-2013)

Ref Expression
Hypotheses ecovdi.1 D=S×S/˙
ecovdi.2 zSwSvSuSzw˙+˙vu˙=MN˙
ecovdi.3 xSySMSNSxy˙·˙MN˙=HJ˙
ecovdi.4 xSySzSwSxy˙·˙zw˙=WX˙
ecovdi.5 xSySvSuSxy˙·˙vu˙=YZ˙
ecovdi.6 WSXSYSZSWX˙+˙YZ˙=KL˙
ecovdi.7 zSwSvSuSMSNS
ecovdi.8 xSySzSwSWSXS
ecovdi.9 xSySvSuSYSZS
ecovdi.10 H=K
ecovdi.11 J=L
Assertion ecovdi ADBDCDA·˙B+˙C=A·˙B+˙A·˙C

Proof

Step Hyp Ref Expression
1 ecovdi.1 D=S×S/˙
2 ecovdi.2 zSwSvSuSzw˙+˙vu˙=MN˙
3 ecovdi.3 xSySMSNSxy˙·˙MN˙=HJ˙
4 ecovdi.4 xSySzSwSxy˙·˙zw˙=WX˙
5 ecovdi.5 xSySvSuSxy˙·˙vu˙=YZ˙
6 ecovdi.6 WSXSYSZSWX˙+˙YZ˙=KL˙
7 ecovdi.7 zSwSvSuSMSNS
8 ecovdi.8 xSySzSwSWSXS
9 ecovdi.9 xSySvSuSYSZS
10 ecovdi.10 H=K
11 ecovdi.11 J=L
12 oveq1 xy˙=Axy˙·˙zw˙+˙vu˙=A·˙zw˙+˙vu˙
13 oveq1 xy˙=Axy˙·˙zw˙=A·˙zw˙
14 oveq1 xy˙=Axy˙·˙vu˙=A·˙vu˙
15 13 14 oveq12d xy˙=Axy˙·˙zw˙+˙xy˙·˙vu˙=A·˙zw˙+˙A·˙vu˙
16 12 15 eqeq12d xy˙=Axy˙·˙zw˙+˙vu˙=xy˙·˙zw˙+˙xy˙·˙vu˙A·˙zw˙+˙vu˙=A·˙zw˙+˙A·˙vu˙
17 oveq1 zw˙=Bzw˙+˙vu˙=B+˙vu˙
18 17 oveq2d zw˙=BA·˙zw˙+˙vu˙=A·˙B+˙vu˙
19 oveq2 zw˙=BA·˙zw˙=A·˙B
20 19 oveq1d zw˙=BA·˙zw˙+˙A·˙vu˙=A·˙B+˙A·˙vu˙
21 18 20 eqeq12d zw˙=BA·˙zw˙+˙vu˙=A·˙zw˙+˙A·˙vu˙A·˙B+˙vu˙=A·˙B+˙A·˙vu˙
22 oveq2 vu˙=CB+˙vu˙=B+˙C
23 22 oveq2d vu˙=CA·˙B+˙vu˙=A·˙B+˙C
24 oveq2 vu˙=CA·˙vu˙=A·˙C
25 24 oveq2d vu˙=CA·˙B+˙A·˙vu˙=A·˙B+˙A·˙C
26 23 25 eqeq12d vu˙=CA·˙B+˙vu˙=A·˙B+˙A·˙vu˙A·˙B+˙C=A·˙B+˙A·˙C
27 opeq12 H=KJ=LHJ=KL
28 27 eceq1d H=KJ=LHJ˙=KL˙
29 10 11 28 mp2an HJ˙=KL˙
30 2 oveq2d zSwSvSuSxy˙·˙zw˙+˙vu˙=xy˙·˙MN˙
31 30 adantl xSySzSwSvSuSxy˙·˙zw˙+˙vu˙=xy˙·˙MN˙
32 7 3 sylan2 xSySzSwSvSuSxy˙·˙MN˙=HJ˙
33 31 32 eqtrd xSySzSwSvSuSxy˙·˙zw˙+˙vu˙=HJ˙
34 33 3impb xSySzSwSvSuSxy˙·˙zw˙+˙vu˙=HJ˙
35 4 5 oveqan12d xSySzSwSxSySvSuSxy˙·˙zw˙+˙xy˙·˙vu˙=WX˙+˙YZ˙
36 8 9 6 syl2an xSySzSwSxSySvSuSWX˙+˙YZ˙=KL˙
37 35 36 eqtrd xSySzSwSxSySvSuSxy˙·˙zw˙+˙xy˙·˙vu˙=KL˙
38 37 3impdi xSySzSwSvSuSxy˙·˙zw˙+˙xy˙·˙vu˙=KL˙
39 29 34 38 3eqtr4a xSySzSwSvSuSxy˙·˙zw˙+˙vu˙=xy˙·˙zw˙+˙xy˙·˙vu˙
40 1 16 21 26 39 3ecoptocl ADBDCDA·˙B+˙C=A·˙B+˙A·˙C