Description: Lemma used to transfer a distributive law via an equivalence relation. (Contributed by NM, 2-Sep-1995) (Revised by David Abernethy, 4-Jun-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ecovdi.1 | |
|
ecovdi.2 | |
||
ecovdi.3 | |
||
ecovdi.4 | |
||
ecovdi.5 | |
||
ecovdi.6 | |
||
ecovdi.7 | |
||
ecovdi.8 | |
||
ecovdi.9 | |
||
ecovdi.10 | |
||
ecovdi.11 | |
||
Assertion | ecovdi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ecovdi.1 | |
|
2 | ecovdi.2 | |
|
3 | ecovdi.3 | |
|
4 | ecovdi.4 | |
|
5 | ecovdi.5 | |
|
6 | ecovdi.6 | |
|
7 | ecovdi.7 | |
|
8 | ecovdi.8 | |
|
9 | ecovdi.9 | |
|
10 | ecovdi.10 | |
|
11 | ecovdi.11 | |
|
12 | oveq1 | |
|
13 | oveq1 | |
|
14 | oveq1 | |
|
15 | 13 14 | oveq12d | |
16 | 12 15 | eqeq12d | |
17 | oveq1 | |
|
18 | 17 | oveq2d | |
19 | oveq2 | |
|
20 | 19 | oveq1d | |
21 | 18 20 | eqeq12d | |
22 | oveq2 | |
|
23 | 22 | oveq2d | |
24 | oveq2 | |
|
25 | 24 | oveq2d | |
26 | 23 25 | eqeq12d | |
27 | opeq12 | |
|
28 | 27 | eceq1d | |
29 | 10 11 28 | mp2an | |
30 | 2 | oveq2d | |
31 | 30 | adantl | |
32 | 7 3 | sylan2 | |
33 | 31 32 | eqtrd | |
34 | 33 | 3impb | |
35 | 4 5 | oveqan12d | |
36 | 8 9 6 | syl2an | |
37 | 35 36 | eqtrd | |
38 | 37 | 3impdi | |
39 | 29 34 38 | 3eqtr4a | |
40 | 1 16 21 26 39 | 3ecoptocl | |