Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Range Cartesian product
ecun
Next ⟩
ecunres
Metamath Proof Explorer
Ascii
Unicode
Theorem
ecun
Description:
The union coset of
A
.
(Contributed by
Peter Mazsa
, 28-Jan-2026)
Ref
Expression
Assertion
ecun
⊢
A
∈
V
→
A
R
∪
S
=
A
R
∪
A
S
Proof
Step
Hyp
Ref
Expression
1
unab
⊢
x
|
A
R
x
∪
x
|
A
S
x
=
x
|
A
R
x
∨
A
S
x
2
1
a1i
⊢
A
∈
V
→
x
|
A
R
x
∪
x
|
A
S
x
=
x
|
A
R
x
∨
A
S
x
3
dfec2
⊢
A
∈
V
→
A
R
=
x
|
A
R
x
4
dfec2
⊢
A
∈
V
→
A
S
=
x
|
A
S
x
5
3
4
uneq12d
⊢
A
∈
V
→
A
R
∪
A
S
=
x
|
A
R
x
∪
x
|
A
S
x
6
elecALTV
⊢
A
∈
V
∧
x
∈
V
→
x
∈
A
R
∪
S
↔
A
R
∪
S
x
7
6
elvd
⊢
A
∈
V
→
x
∈
A
R
∪
S
↔
A
R
∪
S
x
8
brun
⊢
A
R
∪
S
x
↔
A
R
x
∨
A
S
x
9
7
8
bitrdi
⊢
A
∈
V
→
x
∈
A
R
∪
S
↔
A
R
x
∨
A
S
x
10
9
eqabdv
⊢
A
∈
V
→
A
R
∪
S
=
x
|
A
R
x
∨
A
S
x
11
2
5
10
3eqtr4rd
⊢
A
∈
V
→
A
R
∪
S
=
A
R
∪
A
S