Metamath Proof Explorer


Theorem edg0usgr

Description: A class without edges is a simple graph. Since ran F = (/) does not generally imply Fun F , but Fun ( iEdgG ) is required for G to be a simple graph, however, this must be provided as assertion. (Contributed by AV, 18-Oct-2020)

Ref Expression
Assertion edg0usgr GWEdgG=FuniEdgGGUSGraph

Proof

Step Hyp Ref Expression
1 edgval EdgG=raniEdgG
2 1 a1i GWEdgG=raniEdgG
3 2 eqeq1d GWEdgG=raniEdgG=
4 funrel FuniEdgGReliEdgG
5 relrn0 ReliEdgGiEdgG=raniEdgG=
6 5 bicomd ReliEdgGraniEdgG=iEdgG=
7 4 6 syl FuniEdgGraniEdgG=iEdgG=
8 simpr iEdgG=GWGW
9 simpl iEdgG=GWiEdgG=
10 8 9 usgr0e iEdgG=GWGUSGraph
11 10 ex iEdgG=GWGUSGraph
12 7 11 syl6bi FuniEdgGraniEdgG=GWGUSGraph
13 12 com13 GWraniEdgG=FuniEdgGGUSGraph
14 3 13 sylbid GWEdgG=FuniEdgGGUSGraph
15 14 3imp GWEdgG=FuniEdgGGUSGraph