Metamath Proof Explorer


Theorem efgmnvl

Description: The inversion function on the generators is an involution. (Contributed by Mario Carneiro, 1-Oct-2015)

Ref Expression
Hypothesis efgmval.m M=yI,z2𝑜y1𝑜z
Assertion efgmnvl AI×2𝑜MMA=A

Proof

Step Hyp Ref Expression
1 efgmval.m M=yI,z2𝑜y1𝑜z
2 elxp2 AI×2𝑜aIb2𝑜A=ab
3 1 efgmval aIb2𝑜aMb=a1𝑜b
4 3 fveq2d aIb2𝑜MaMb=Ma1𝑜b
5 df-ov aM1𝑜b=Ma1𝑜b
6 4 5 eqtr4di aIb2𝑜MaMb=aM1𝑜b
7 2oconcl b2𝑜1𝑜b2𝑜
8 1 efgmval aI1𝑜b2𝑜aM1𝑜b=a1𝑜1𝑜b
9 7 8 sylan2 aIb2𝑜aM1𝑜b=a1𝑜1𝑜b
10 1on 1𝑜On
11 10 onordi Ord1𝑜
12 ordtr Ord1𝑜Tr1𝑜
13 trsucss Tr1𝑜bsuc1𝑜b1𝑜
14 11 12 13 mp2b bsuc1𝑜b1𝑜
15 df-2o 2𝑜=suc1𝑜
16 14 15 eleq2s b2𝑜b1𝑜
17 16 adantl aIb2𝑜b1𝑜
18 dfss4 b1𝑜1𝑜1𝑜b=b
19 17 18 sylib aIb2𝑜1𝑜1𝑜b=b
20 19 opeq2d aIb2𝑜a1𝑜1𝑜b=ab
21 6 9 20 3eqtrd aIb2𝑜MaMb=ab
22 fveq2 A=abMA=Mab
23 df-ov aMb=Mab
24 22 23 eqtr4di A=abMA=aMb
25 24 fveq2d A=abMMA=MaMb
26 id A=abA=ab
27 25 26 eqeq12d A=abMMA=AMaMb=ab
28 21 27 syl5ibrcom aIb2𝑜A=abMMA=A
29 28 rexlimivv aIb2𝑜A=abMMA=A
30 2 29 sylbi AI×2𝑜MMA=A