Metamath Proof Explorer


Theorem efgt0

Description: The exponential of a real number is greater than 0. (Contributed by Paul Chapman, 21-Aug-2007) (Revised by Mario Carneiro, 30-Apr-2014)

Ref Expression
Assertion efgt0 A0<eA

Proof

Step Hyp Ref Expression
1 reefcl AeA
2 rehalfcl AA2
3 2 reefcld AeA2
4 3 sqge0d A0eA22
5 2 recnd AA2
6 2z 2
7 efexp A22e2A2=eA22
8 5 6 7 sylancl Ae2A2=eA22
9 recn AA
10 2cn 2
11 2ne0 20
12 divcan2 A2202A2=A
13 10 11 12 mp3an23 A2A2=A
14 9 13 syl A2A2=A
15 14 fveq2d Ae2A2=eA
16 8 15 eqtr3d AeA22=eA
17 4 16 breqtrd A0eA
18 efne0 AeA0
19 9 18 syl AeA0
20 1 17 19 ne0gt0d A0<eA