Metamath Proof Explorer


Theorem efif1olem1

Description: Lemma for efif1o . (Contributed by Mario Carneiro, 13-May-2014)

Ref Expression
Hypothesis efif1olem1.1 D=AA+2π
Assertion efif1olem1 AxDyDxy<2π

Proof

Step Hyp Ref Expression
1 efif1olem1.1 D=AA+2π
2 simprr AxDyDyD
3 2 1 eleqtrdi AxDyDyAA+2π
4 rexr AA*
5 simpl AxDyDA
6 2re 2
7 pire π
8 6 7 remulcli 2π
9 readdcl A2πA+2π
10 5 8 9 sylancl AxDyDA+2π
11 elioc2 A*A+2πyAA+2πyA<yyA+2π
12 4 10 11 syl2an2r AxDyDyAA+2πyA<yyA+2π
13 3 12 mpbid AxDyDyA<yyA+2π
14 13 simp1d AxDyDy
15 simprl AxDyDxD
16 15 1 eleqtrdi AxDyDxAA+2π
17 elioc2 A*A+2πxAA+2πxA<xxA+2π
18 4 10 17 syl2an2r AxDyDxAA+2πxA<xxA+2π
19 16 18 mpbid AxDyDxA<xxA+2π
20 19 simp1d AxDyDx
21 readdcl x2πx+2π
22 20 8 21 sylancl AxDyDx+2π
23 13 simp3d AxDyDyA+2π
24 8 a1i AxDyD2π
25 19 simp2d AxDyDA<x
26 5 20 24 25 ltadd1dd AxDyDA+2π<x+2π
27 14 10 22 23 26 lelttrd AxDyDy<x+2π
28 14 24 20 ltsubaddd AxDyDy2π<xy<x+2π
29 27 28 mpbird AxDyDy2π<x
30 readdcl y2πy+2π
31 14 8 30 sylancl AxDyDy+2π
32 19 simp3d AxDyDxA+2π
33 13 simp2d AxDyDA<y
34 5 14 24 33 ltadd1dd AxDyDA+2π<y+2π
35 20 10 31 32 34 lelttrd AxDyDx<y+2π
36 20 14 24 absdifltd AxDyDxy<2πy2π<xx<y+2π
37 29 35 36 mpbir2and AxDyDxy<2π