Description: Lemma for efif1o . (Contributed by Mario Carneiro, 13-May-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | efif1olem1.1 | |
|
Assertion | efif1olem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | efif1olem1.1 | |
|
2 | simprr | |
|
3 | 2 1 | eleqtrdi | |
4 | rexr | |
|
5 | simpl | |
|
6 | 2re | |
|
7 | pire | |
|
8 | 6 7 | remulcli | |
9 | readdcl | |
|
10 | 5 8 9 | sylancl | |
11 | elioc2 | |
|
12 | 4 10 11 | syl2an2r | |
13 | 3 12 | mpbid | |
14 | 13 | simp1d | |
15 | simprl | |
|
16 | 15 1 | eleqtrdi | |
17 | elioc2 | |
|
18 | 4 10 17 | syl2an2r | |
19 | 16 18 | mpbid | |
20 | 19 | simp1d | |
21 | readdcl | |
|
22 | 20 8 21 | sylancl | |
23 | 13 | simp3d | |
24 | 8 | a1i | |
25 | 19 | simp2d | |
26 | 5 20 24 25 | ltadd1dd | |
27 | 14 10 22 23 26 | lelttrd | |
28 | 14 24 20 | ltsubaddd | |
29 | 27 28 | mpbird | |
30 | readdcl | |
|
31 | 14 8 30 | sylancl | |
32 | 19 | simp3d | |
33 | 13 | simp2d | |
34 | 5 14 24 33 | ltadd1dd | |
35 | 20 10 31 32 34 | lelttrd | |
36 | 20 14 24 | absdifltd | |
37 | 29 35 36 | mpbir2and | |