Metamath Proof Explorer


Theorem efimpi

Description: The exponential function at _i times a real number less _pi . (Contributed by Paul Chapman, 15-Mar-2008)

Ref Expression
Assertion efimpi AeiAπ=eiA

Proof

Step Hyp Ref Expression
1 picn π
2 subcl AπAπ
3 1 2 mpan2 AAπ
4 efival AπeiAπ=cosAπ+isinAπ
5 3 4 syl AeiAπ=cosAπ+isinAπ
6 coscl AcosA
7 ax-icn i
8 sincl AsinA
9 mulcl isinAisinA
10 7 8 9 sylancr AisinA
11 6 10 negdid AcosA+isinA=-cosA+isinA
12 cosmpi AcosAπ=cosA
13 sinmpi AsinAπ=sinA
14 13 oveq2d AisinAπ=isinA
15 mulneg2 isinAisinA=isinA
16 7 8 15 sylancr AisinA=isinA
17 14 16 eqtrd AisinAπ=isinA
18 12 17 oveq12d AcosAπ+isinAπ=-cosA+isinA
19 11 18 eqtr4d AcosA+isinA=cosAπ+isinAπ
20 5 19 eqtr4d AeiAπ=cosA+isinA
21 efival AeiA=cosA+isinA
22 21 negeqd AeiA=cosA+isinA
23 20 22 eqtr4d AeiAπ=eiA