Metamath Proof Explorer


Theorem efimpi

Description: The exponential function at _i times a real number less _pi . (Contributed by Paul Chapman, 15-Mar-2008)

Ref Expression
Assertion efimpi A e i A π = e i A

Proof

Step Hyp Ref Expression
1 picn π
2 subcl A π A π
3 1 2 mpan2 A A π
4 efival A π e i A π = cos A π + i sin A π
5 3 4 syl A e i A π = cos A π + i sin A π
6 coscl A cos A
7 ax-icn i
8 sincl A sin A
9 mulcl i sin A i sin A
10 7 8 9 sylancr A i sin A
11 6 10 negdid A cos A + i sin A = - cos A + i sin A
12 cosmpi A cos A π = cos A
13 sinmpi A sin A π = sin A
14 13 oveq2d A i sin A π = i sin A
15 mulneg2 i sin A i sin A = i sin A
16 7 8 15 sylancr A i sin A = i sin A
17 14 16 eqtrd A i sin A π = i sin A
18 12 17 oveq12d A cos A π + i sin A π = - cos A + i sin A
19 11 18 eqtr4d A cos A + i sin A = cos A π + i sin A π
20 5 19 eqtr4d A e i A π = cos A + i sin A
21 efival A e i A = cos A + i sin A
22 21 negeqd A e i A = cos A + i sin A
23 20 22 eqtr4d A e i A π = e i A