Metamath Proof Explorer


Theorem efmnd

Description: The monoid of endofunctions on set A . (Contributed by AV, 25-Jan-2024)

Ref Expression
Hypotheses efmnd.1 No typesetting found for |- G = ( EndoFMnd ` A ) with typecode |-
efmnd.2 B=AA
efmnd.3 +˙=fB,gBfg
efmnd.4 J=𝑡A×𝒫A
Assertion efmnd AVG=BasendxB+ndx+˙TopSetndxJ

Proof

Step Hyp Ref Expression
1 efmnd.1 Could not format G = ( EndoFMnd ` A ) : No typesetting found for |- G = ( EndoFMnd ` A ) with typecode |-
2 efmnd.2 B=AA
3 efmnd.3 +˙=fB,gBfg
4 efmnd.4 J=𝑡A×𝒫A
5 elex AVAV
6 ovexd a=AaaV
7 id b=aab=aa
8 id a=Aa=A
9 8 8 oveq12d a=Aaa=AA
10 9 2 eqtr4di a=Aaa=B
11 7 10 sylan9eqr a=Ab=aab=B
12 11 opeq2d a=Ab=aaBasendxb=BasendxB
13 eqidd a=Ab=aafg=fg
14 11 11 13 mpoeq123dv a=Ab=aafb,gbfg=fB,gBfg
15 14 3 eqtr4di a=Ab=aafb,gbfg=+˙
16 15 opeq2d a=Ab=aa+ndxfb,gbfg=+ndx+˙
17 simpl a=Ab=aaa=A
18 pweq a=A𝒫a=𝒫A
19 18 sneqd a=A𝒫a=𝒫A
20 19 adantr a=Ab=aa𝒫a=𝒫A
21 17 20 xpeq12d a=Ab=aaa×𝒫a=A×𝒫A
22 21 fveq2d a=Ab=aa𝑡a×𝒫a=𝑡A×𝒫A
23 22 4 eqtr4di a=Ab=aa𝑡a×𝒫a=J
24 23 opeq2d a=Ab=aaTopSetndx𝑡a×𝒫a=TopSetndxJ
25 12 16 24 tpeq123d a=Ab=aaBasendxb+ndxfb,gbfgTopSetndx𝑡a×𝒫a=BasendxB+ndx+˙TopSetndxJ
26 6 25 csbied a=Aaa/bBasendxb+ndxfb,gbfgTopSetndx𝑡a×𝒫a=BasendxB+ndx+˙TopSetndxJ
27 df-efmnd Could not format EndoFMnd = ( a e. _V |-> [_ ( a ^m a ) / b ]_ { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( f e. b , g e. b |-> ( f o. g ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( a X. { ~P a } ) ) >. } ) : No typesetting found for |- EndoFMnd = ( a e. _V |-> [_ ( a ^m a ) / b ]_ { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( f e. b , g e. b |-> ( f o. g ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( a X. { ~P a } ) ) >. } ) with typecode |-
28 tpex BasendxB+ndx+˙TopSetndxJV
29 26 27 28 fvmpt Could not format ( A e. _V -> ( EndoFMnd ` A ) = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) : No typesetting found for |- ( A e. _V -> ( EndoFMnd ` A ) = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) with typecode |-
30 5 29 syl Could not format ( A e. V -> ( EndoFMnd ` A ) = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) : No typesetting found for |- ( A e. V -> ( EndoFMnd ` A ) = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) with typecode |-
31 1 30 eqtrid AVG=BasendxB+ndx+˙TopSetndxJ