Metamath Proof Explorer


Theorem efmndid

Description: The identity function restricted to a set A is the identity element of the monoid of endofunctions on A . (Contributed by AV, 25-Jan-2024)

Ref Expression
Hypothesis ielefmnd.g No typesetting found for |- G = ( EndoFMnd ` A ) with typecode |-
Assertion efmndid AVIA=0G

Proof

Step Hyp Ref Expression
1 ielefmnd.g Could not format G = ( EndoFMnd ` A ) : No typesetting found for |- G = ( EndoFMnd ` A ) with typecode |-
2 eqid BaseG=BaseG
3 eqid 0G=0G
4 eqid +G=+G
5 1 ielefmnd AVIABaseG
6 1 2 4 efmndov IABaseGfBaseGIA+Gf=IAf
7 5 6 sylan AVfBaseGIA+Gf=IAf
8 1 2 efmndbasf fBaseGf:AA
9 8 adantl AVfBaseGf:AA
10 fcoi2 f:AAIAf=f
11 9 10 syl AVfBaseGIAf=f
12 7 11 eqtrd AVfBaseGIA+Gf=f
13 5 anim1ci AVfBaseGfBaseGIABaseG
14 1 2 4 efmndov fBaseGIABaseGf+GIA=fIA
15 13 14 syl AVfBaseGf+GIA=fIA
16 fcoi1 f:AAfIA=f
17 9 16 syl AVfBaseGfIA=f
18 15 17 eqtrd AVfBaseGf+GIA=f
19 2 3 4 5 12 18 ismgmid2 AVIA=0G