Metamath Proof Explorer


Theorem eftabs

Description: The absolute value of a term in the series expansion of the exponential function. (Contributed by Paul Chapman, 23-Nov-2007)

Ref Expression
Assertion eftabs AK0AKK!=AKK!

Proof

Step Hyp Ref Expression
1 expcl AK0AK
2 faccl K0K!
3 2 adantl AK0K!
4 3 nncnd AK0K!
5 facne0 K0K!0
6 5 adantl AK0K!0
7 1 4 6 absdivd AK0AKK!=AKK!
8 absexp AK0AK=AK
9 3 nnred AK0K!
10 3 nnnn0d AK0K!0
11 10 nn0ge0d AK00K!
12 9 11 absidd AK0K!=K!
13 8 12 oveq12d AK0AKK!=AKK!
14 7 13 eqtrd AK0AKK!=AKK!