Metamath Proof Explorer


Theorem elaltxp

Description: Membership in alternate Cartesian products. (Contributed by Scott Fenton, 23-Mar-2012)

Ref Expression
Assertion elaltxp XA××BxAyBX=xy

Proof

Step Hyp Ref Expression
1 elex XA××BXV
2 altopex xyV
3 eleq1 X=xyXVxyV
4 2 3 mpbiri X=xyXV
5 4 a1i xAyBX=xyXV
6 5 rexlimivv xAyBX=xyXV
7 eqeq1 z=Xz=xyX=xy
8 7 2rexbidv z=XxAyBz=xyxAyBX=xy
9 df-altxp A××B=z|xAyBz=xy
10 8 9 elab2g XVXA××BxAyBX=xy
11 1 6 10 pm5.21nii XA××BxAyBX=xy