Metamath Proof Explorer


Theorem elaltxp

Description: Membership in alternate Cartesian products. (Contributed by Scott Fenton, 23-Mar-2012)

Ref Expression
Assertion elaltxp X A ×× B x A y B X = x y

Proof

Step Hyp Ref Expression
1 elex X A ×× B X V
2 altopex x y V
3 eleq1 X = x y X V x y V
4 2 3 mpbiri X = x y X V
5 4 a1i x A y B X = x y X V
6 5 rexlimivv x A y B X = x y X V
7 eqeq1 z = X z = x y X = x y
8 7 2rexbidv z = X x A y B z = x y x A y B X = x y
9 df-altxp A ×× B = z | x A y B z = x y
10 8 9 elab2g X V X A ×× B x A y B X = x y
11 1 6 10 pm5.21nii X A ×× B x A y B X = x y