Metamath Proof Explorer


Theorem elcls2

Description: Membership in a closure. (Contributed by NM, 5-Mar-2007)

Ref Expression
Hypothesis clscld.1 X=J
Assertion elcls2 JTopSXPclsJSPXxJPxxS

Proof

Step Hyp Ref Expression
1 clscld.1 X=J
2 1 clsss3 JTopSXclsJSX
3 ssel clsJSXPclsJSPX
4 3 pm4.71rd clsJSXPclsJSPXPclsJS
5 2 4 syl JTopSXPclsJSPXPclsJS
6 1 elcls JTopSXPXPclsJSxJPxxS
7 6 3expa JTopSXPXPclsJSxJPxxS
8 7 pm5.32da JTopSXPXPclsJSPXxJPxxS
9 5 8 bitrd JTopSXPclsJSPXxJPxxS