Metamath Proof Explorer


Theorem elcnop

Description: Property defining a continuous Hilbert space operator. (Contributed by NM, 28-Jan-2006) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)

Ref Expression
Assertion elcnop TContOpT:xy+z+wnormw-x<znormTw-Tx<y

Proof

Step Hyp Ref Expression
1 fveq1 t=Ttw=Tw
2 fveq1 t=Ttx=Tx
3 1 2 oveq12d t=Ttw-tx=Tw-Tx
4 3 fveq2d t=Tnormtw-tx=normTw-Tx
5 4 breq1d t=Tnormtw-tx<ynormTw-Tx<y
6 5 imbi2d t=Tnormw-x<znormtw-tx<ynormw-x<znormTw-Tx<y
7 6 rexralbidv t=Tz+wnormw-x<znormtw-tx<yz+wnormw-x<znormTw-Tx<y
8 7 2ralbidv t=Txy+z+wnormw-x<znormtw-tx<yxy+z+wnormw-x<znormTw-Tx<y
9 df-cnop ContOp=t|xy+z+wnormw-x<znormtw-tx<y
10 8 9 elrab2 TContOpTxy+z+wnormw-x<znormTw-Tx<y
11 ax-hilex V
12 11 11 elmap TT:
13 12 anbi1i Txy+z+wnormw-x<znormTw-Tx<yT:xy+z+wnormw-x<znormTw-Tx<y
14 10 13 bitri TContOpT:xy+z+wnormw-x<znormTw-Tx<y