Metamath Proof Explorer


Theorem eldisjn0el

Description: Special case of disjdmqseq (perhaps this is the closest theorem to the former prter2 ). (Contributed by Peter Mazsa, 26-Sep-2021)

Ref Expression
Assertion eldisjn0el ElDisjA¬AA/A=A

Proof

Step Hyp Ref Expression
1 disjdmqseq DisjE-1AdomE-1A/E-1A=AdomE-1A/E-1A=A
2 df-eldisj ElDisjADisjE-1A
3 n0el3 ¬AdomE-1A/E-1A=A
4 dmqs1cosscnvepreseq domE-1A/E-1A=AA/A=A
5 4 bicomi A/A=AdomE-1A/E-1A=A
6 3 5 bibi12i ¬AA/A=AdomE-1A/E-1A=AdomE-1A/E-1A=A
7 1 2 6 3imtr4i ElDisjA¬AA/A=A