Metamath Proof Explorer


Theorem eldisjs5

Description: Elementhood in the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021)

Ref Expression
Assertion eldisjs5 RVRDisjsudomRvdomRu=vuRvR=RRels

Proof

Step Hyp Ref Expression
1 eldisjs2 RDisjsR-1IRRels
2 cosscnvssid5 R-1IRelRudomRvdomRu=vuRvR=RelR
3 elrelsrel RVRRelsRelR
4 3 anbi2d RVR-1IRRelsR-1IRelR
5 3 anbi2d RVudomRvdomRu=vuRvR=RRelsudomRvdomRu=vuRvR=RelR
6 4 5 bibi12d RVR-1IRRelsudomRvdomRu=vuRvR=RRelsR-1IRelRudomRvdomRu=vuRvR=RelR
7 2 6 mpbiri RVR-1IRRelsudomRvdomRu=vuRvR=RRels
8 1 7 bitrid RVRDisjsudomRvdomRu=vuRvR=RRels