Metamath Proof Explorer


Theorem eldju2ndl

Description: The second component of an element of a disjoint union is an element of the left class of the disjoint union if its first component is the empty set. (Contributed by AV, 26-Jun-2022)

Ref Expression
Assertion eldju2ndl XA⊔︀B1stX=2ndXA

Proof

Step Hyp Ref Expression
1 df-dju A⊔︀B=×A1𝑜×B
2 1 eleq2i XA⊔︀BX×A1𝑜×B
3 elun X×A1𝑜×BX×AX1𝑜×B
4 2 3 bitri XA⊔︀BX×AX1𝑜×B
5 elxp6 X×AX=1stX2ndX1stX2ndXA
6 simprr X=1stX2ndX1stX2ndXA2ndXA
7 6 a1d X=1stX2ndX1stX2ndXA1stX=2ndXA
8 5 7 sylbi X×A1stX=2ndXA
9 elxp6 X1𝑜×BX=1stX2ndX1stX1𝑜2ndXB
10 elsni 1stX1𝑜1stX=1𝑜
11 1n0 1𝑜
12 neeq1 1stX=1𝑜1stX1𝑜
13 11 12 mpbiri 1stX=1𝑜1stX
14 eqneqall 1stX=1stX2ndXA
15 14 com12 1stX1stX=2ndXA
16 10 13 15 3syl 1stX1𝑜1stX=2ndXA
17 16 ad2antrl X=1stX2ndX1stX1𝑜2ndXB1stX=2ndXA
18 9 17 sylbi X1𝑜×B1stX=2ndXA
19 8 18 jaoi X×AX1𝑜×B1stX=2ndXA
20 4 19 sylbi XA⊔︀B1stX=2ndXA
21 20 imp XA⊔︀B1stX=2ndXA