Metamath Proof Explorer


Theorem eldju2ndr

Description: The second component of an element of a disjoint union is an element of the right class of the disjoint union if its first component is not the empty set. (Contributed by AV, 26-Jun-2022)

Ref Expression
Assertion eldju2ndr X A ⊔︀ B 1 st X 2 nd X B

Proof

Step Hyp Ref Expression
1 df-dju A ⊔︀ B = × A 1 𝑜 × B
2 1 eleq2i X A ⊔︀ B X × A 1 𝑜 × B
3 elun X × A 1 𝑜 × B X × A X 1 𝑜 × B
4 2 3 bitri X A ⊔︀ B X × A X 1 𝑜 × B
5 elxp6 X × A X = 1 st X 2 nd X 1 st X 2 nd X A
6 elsni 1 st X 1 st X =
7 eqneqall 1 st X = 1 st X 2 nd X B
8 6 7 syl 1 st X 1 st X 2 nd X B
9 8 ad2antrl X = 1 st X 2 nd X 1 st X 2 nd X A 1 st X 2 nd X B
10 5 9 sylbi X × A 1 st X 2 nd X B
11 elxp6 X 1 𝑜 × B X = 1 st X 2 nd X 1 st X 1 𝑜 2 nd X B
12 simprr X = 1 st X 2 nd X 1 st X 1 𝑜 2 nd X B 2 nd X B
13 12 a1d X = 1 st X 2 nd X 1 st X 1 𝑜 2 nd X B 1 st X 2 nd X B
14 11 13 sylbi X 1 𝑜 × B 1 st X 2 nd X B
15 10 14 jaoi X × A X 1 𝑜 × B 1 st X 2 nd X B
16 4 15 sylbi X A ⊔︀ B 1 st X 2 nd X B
17 16 imp X A ⊔︀ B 1 st X 2 nd X B