Metamath Proof Explorer


Theorem eldju2ndr

Description: The second component of an element of a disjoint union is an element of the right class of the disjoint union if its first component is not the empty set. (Contributed by AV, 26-Jun-2022)

Ref Expression
Assertion eldju2ndr XA⊔︀B1stX2ndXB

Proof

Step Hyp Ref Expression
1 df-dju A⊔︀B=×A1𝑜×B
2 1 eleq2i XA⊔︀BX×A1𝑜×B
3 elun X×A1𝑜×BX×AX1𝑜×B
4 2 3 bitri XA⊔︀BX×AX1𝑜×B
5 elxp6 X×AX=1stX2ndX1stX2ndXA
6 elsni 1stX1stX=
7 eqneqall 1stX=1stX2ndXB
8 6 7 syl 1stX1stX2ndXB
9 8 ad2antrl X=1stX2ndX1stX2ndXA1stX2ndXB
10 5 9 sylbi X×A1stX2ndXB
11 elxp6 X1𝑜×BX=1stX2ndX1stX1𝑜2ndXB
12 simprr X=1stX2ndX1stX1𝑜2ndXB2ndXB
13 12 a1d X=1stX2ndX1stX1𝑜2ndXB1stX2ndXB
14 11 13 sylbi X1𝑜×B1stX2ndXB
15 10 14 jaoi X×AX1𝑜×B1stX2ndXB
16 4 15 sylbi XA⊔︀B1stX2ndXB
17 16 imp XA⊔︀B1stX2ndXB