Metamath Proof Explorer


Theorem eldprd

Description: A class A is an internal direct product iff it is the (group) sum of an infinite, but finitely supported cartesian product of subgroups (which mutually commute and have trivial intersections). (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 11-Jul-2019)

Ref Expression
Hypotheses dprdval.0 0˙=0G
dprdval.w W=hiISi|finSupp0˙h
Assertion eldprd domS=IAGDProdSGdomDProdSfWA=Gf

Proof

Step Hyp Ref Expression
1 dprdval.0 0˙=0G
2 dprdval.w W=hiISi|finSupp0˙h
3 elfvdm ADProdGSGSdomDProd
4 df-ov GDProdS=DProdGS
5 3 4 eleq2s AGDProdSGSdomDProd
6 df-br GdomDProdSGSdomDProd
7 5 6 sylibr AGDProdSGdomDProdS
8 7 pm4.71ri AGDProdSGdomDProdSAGDProdS
9 1 2 dprdval GdomDProdSdomS=IGDProdS=ranfWGf
10 9 eleq2d GdomDProdSdomS=IAGDProdSAranfWGf
11 eqid fWGf=fWGf
12 ovex GfV
13 11 12 elrnmpti AranfWGffWA=Gf
14 10 13 bitrdi GdomDProdSdomS=IAGDProdSfWA=Gf
15 14 ancoms domS=IGdomDProdSAGDProdSfWA=Gf
16 15 pm5.32da domS=IGdomDProdSAGDProdSGdomDProdSfWA=Gf
17 8 16 bitrid domS=IAGDProdSGdomDProdSfWA=Gf