Metamath Proof Explorer


Theorem eleesub

Description: Membership of a subtraction mapping in a Euclidean space. (Contributed by Scott Fenton, 17-Jul-2013)

Ref Expression
Hypothesis eleesub.1 C=i1NAiBi
Assertion eleesub A𝔼NB𝔼NC𝔼N

Proof

Step Hyp Ref Expression
1 eleesub.1 C=i1NAiBi
2 fveere A𝔼Ni1NAi
3 fveere B𝔼Ni1NBi
4 resubcl AiBiAiBi
5 2 3 4 syl2an A𝔼Ni1NB𝔼Ni1NAiBi
6 5 anandirs A𝔼NB𝔼Ni1NAiBi
7 6 ralrimiva A𝔼NB𝔼Ni1NAiBi
8 eleenn A𝔼NN
9 mptelee Ni1NAiBi𝔼Ni1NAiBi
10 8 9 syl A𝔼Ni1NAiBi𝔼Ni1NAiBi
11 10 adantr A𝔼NB𝔼Ni1NAiBi𝔼Ni1NAiBi
12 7 11 mpbird A𝔼NB𝔼Ni1NAiBi𝔼N
13 1 12 eqeltrid A𝔼NB𝔼NC𝔼N