Metamath Proof Explorer


Theorem elfzo

Description: Membership in a half-open finite set of integers. (Contributed by Stefan O'Rear, 15-Aug-2015)

Ref Expression
Assertion elfzo KMNKM..^NMKK<N

Proof

Step Hyp Ref Expression
1 peano2zm NN1
2 elfz KMN1KMN1MKKN1
3 1 2 syl3an3 KMNKMN1MKKN1
4 fzoval NM..^N=MN1
5 4 eleq2d NKM..^NKMN1
6 5 3ad2ant3 KMNKM..^NKMN1
7 zltlem1 KNK<NKN1
8 7 3adant2 KMNK<NKN1
9 8 anbi2d KMNMKK<NMKKN1
10 3 6 9 3bitr4d KMNKM..^NMKK<N