Metamath Proof Explorer


Theorem elidinxp

Description: Characterization of the elements of the intersection of the identity relation with a Cartesian product. (Contributed by Peter Mazsa, 9-Sep-2022)

Ref Expression
Assertion elidinxp CIA×BxABC=xx

Proof

Step Hyp Ref Expression
1 risset xByBy=x
2 1 anbi2ci xBC=xxC=xxyBy=x
3 r19.42v yBC=xxy=xC=xxyBy=x
4 opeq2 x=yxx=xy
5 4 equcoms y=xxx=xy
6 5 eqeq2d y=xC=xxC=xy
7 6 pm5.32ri C=xxy=xC=xyy=x
8 vex yV
9 8 ideq xIyx=y
10 df-br xIyxyI
11 equcom x=yy=x
12 9 10 11 3bitr3i xyIy=x
13 12 anbi2i C=xyxyIC=xyy=x
14 7 13 bitr4i C=xxy=xC=xyxyI
15 14 rexbii yBC=xxy=xyBC=xyxyI
16 2 3 15 3bitr2i xBC=xxyBC=xyxyI
17 16 rexbii xAxBC=xxxAyBC=xyxyI
18 rexin xABC=xxxAxBC=xx
19 elinxp CIA×BxAyBC=xyxyI
20 17 18 19 3bitr4ri CIA×BxABC=xx