Metamath Proof Explorer


Theorem elimasngOLD

Description: Obsolete version of elimasng as of 16-Oct-2024. (Contributed by Raph Levien, 21-Oct-2006) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion elimasngOLD BVCWCABBCA

Proof

Step Hyp Ref Expression
1 sneq y=By=B
2 1 imaeq2d y=BAy=AB
3 2 eleq2d y=BzAyzAB
4 opeq1 y=Byz=Bz
5 4 eleq1d y=ByzABzA
6 3 5 bibi12d y=BzAyyzAzABBzA
7 eleq1 z=CzABCAB
8 opeq2 z=CBz=BC
9 8 eleq1d z=CBzABCA
10 7 9 bibi12d z=CzABBzACABBCA
11 vex yV
12 vex zV
13 11 12 elimasn zAyyzA
14 6 10 13 vtocl2g BVCWCABBCA