Metamath Proof Explorer


Theorem elimgt0

Description: Hypothesis for weak deduction theorem to eliminate 0 < A . (Contributed by NM, 15-May-1999)

Ref Expression
Assertion elimgt0 0<if0<AA1

Proof

Step Hyp Ref Expression
1 breq2 A=if0<AA10<A0<if0<AA1
2 breq2 1=if0<AA10<10<if0<AA1
3 0lt1 0<1
4 1 2 3 elimhyp 0<if0<AA1