Description: Two ways of saying a set is an element of the intersection of a class with the intersection of a class. (Contributed by RP, 14-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | elinintrab | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex | |
|
2 | 1 | inex2 | |
3 | inss1 | |
|
4 | 2 3 | elmapintrab | |
5 | elin | |
|
6 | 5 | imbi2i | |
7 | jcab | |
|
8 | 6 7 | bitri | |
9 | 8 | albii | |
10 | 19.26 | |
|
11 | 19.23v | |
|
12 | 11 | anbi1i | |
13 | 10 12 | bitri | |
14 | 9 13 | bitri | |
15 | 14 | anbi2i | |
16 | anabs5 | |
|
17 | 15 16 | bitri | |
18 | 4 17 | bitrdi | |