Metamath Proof Explorer


Theorem elinintrab

Description: Two ways of saying a set is an element of the intersection of a class with the intersection of a class. (Contributed by RP, 14-Aug-2020)

Ref Expression
Assertion elinintrab AVAw𝒫B|xw=BxφxφABxφAx

Proof

Step Hyp Ref Expression
1 vex xV
2 1 inex2 BxV
3 inss1 BxB
4 2 3 elmapintrab AVAw𝒫B|xw=BxφxφABxφABx
5 elin ABxABAx
6 5 imbi2i φABxφABAx
7 jcab φABAxφABφAx
8 6 7 bitri φABxφABφAx
9 8 albii xφABxxφABφAx
10 19.26 xφABφAxxφABxφAx
11 19.23v xφABxφAB
12 11 anbi1i xφABxφAxxφABxφAx
13 10 12 bitri xφABφAxxφABxφAx
14 9 13 bitri xφABxxφABxφAx
15 14 anbi2i xφABxφABxxφABxφABxφAx
16 anabs5 xφABxφABxφAxxφABxφAx
17 15 16 bitri xφABxφABxxφABxφAx
18 4 17 bitrdi AVAw𝒫B|xw=BxφxφABxφAx