Metamath Proof Explorer


Theorem eliunov2

Description: Membership in the indexed union over operator values where the index varies the second input is equivalent to the existence of at least one index such that the element is a member of that operator value. Generalized from dfrtrclrec2 . (Contributed by RP, 1-Jun-2020)

Ref Expression
Hypothesis mptiunov2.def C=rVnNr×˙n
Assertion eliunov2 RUNVXCRnNXR×˙n

Proof

Step Hyp Ref Expression
1 mptiunov2.def C=rVnNr×˙n
2 eqid rVnNr×˙n=rVnNr×˙n
3 oveq1 r=Rr×˙n=R×˙n
4 3 iuneq2d r=RnNr×˙n=nNR×˙n
5 elex RURV
6 5 adantr RUNVRV
7 simpr RUNVNV
8 ovex R×˙nV
9 8 rgenw nNR×˙nV
10 iunexg NVnNR×˙nVnNR×˙nV
11 7 9 10 sylancl RUNVnNR×˙nV
12 2 4 6 11 fvmptd3 RUNVrVnNr×˙nR=nNR×˙n
13 eleq2 rVnNr×˙nR=nNR×˙nXrVnNr×˙nRXnNR×˙n
14 eliun XnNR×˙nnNXR×˙n
15 14 a1i RUNVXnNR×˙nnNXR×˙n
16 13 15 sylan9bb rVnNr×˙nR=nNR×˙nRUNVXrVnNr×˙nRnNXR×˙n
17 12 16 mpancom RUNVXrVnNr×˙nRnNXR×˙n
18 fveq1 C=rVnNr×˙nCR=rVnNr×˙nR
19 18 eleq2d C=rVnNr×˙nXCRXrVnNr×˙nR
20 19 bibi1d C=rVnNr×˙nXCRnNXR×˙nXrVnNr×˙nRnNXR×˙n
21 20 imbi2d C=rVnNr×˙nRUNVXCRnNXR×˙nRUNVXrVnNr×˙nRnNXR×˙n
22 1 21 ax-mp RUNVXCRnNXR×˙nRUNVXrVnNr×˙nRnNXR×˙n
23 17 22 mpbir RUNVXCRnNXR×˙n