Metamath Proof Explorer


Theorem eliunov2

Description: Membership in the indexed union over operator values where the index varies the second input is equivalent to the existence of at least one index such that the element is a member of that operator value. Generalized from dfrtrclrec2 . (Contributed by RP, 1-Jun-2020)

Ref Expression
Hypothesis mptiunov2.def C = r V n N r × ˙ n
Assertion eliunov2 R U N V X C R n N X R × ˙ n

Proof

Step Hyp Ref Expression
1 mptiunov2.def C = r V n N r × ˙ n
2 eqid r V n N r × ˙ n = r V n N r × ˙ n
3 oveq1 r = R r × ˙ n = R × ˙ n
4 3 iuneq2d r = R n N r × ˙ n = n N R × ˙ n
5 elex R U R V
6 5 adantr R U N V R V
7 simpr R U N V N V
8 ovex R × ˙ n V
9 8 rgenw n N R × ˙ n V
10 iunexg N V n N R × ˙ n V n N R × ˙ n V
11 7 9 10 sylancl R U N V n N R × ˙ n V
12 2 4 6 11 fvmptd3 R U N V r V n N r × ˙ n R = n N R × ˙ n
13 eleq2 r V n N r × ˙ n R = n N R × ˙ n X r V n N r × ˙ n R X n N R × ˙ n
14 eliun X n N R × ˙ n n N X R × ˙ n
15 14 a1i R U N V X n N R × ˙ n n N X R × ˙ n
16 13 15 sylan9bb r V n N r × ˙ n R = n N R × ˙ n R U N V X r V n N r × ˙ n R n N X R × ˙ n
17 12 16 mpancom R U N V X r V n N r × ˙ n R n N X R × ˙ n
18 fveq1 C = r V n N r × ˙ n C R = r V n N r × ˙ n R
19 18 eleq2d C = r V n N r × ˙ n X C R X r V n N r × ˙ n R
20 19 bibi1d C = r V n N r × ˙ n X C R n N X R × ˙ n X r V n N r × ˙ n R n N X R × ˙ n
21 20 imbi2d C = r V n N r × ˙ n R U N V X C R n N X R × ˙ n R U N V X r V n N r × ˙ n R n N X R × ˙ n
22 1 21 ax-mp R U N V X C R n N X R × ˙ n R U N V X r V n N r × ˙ n R n N X R × ˙ n
23 17 22 mpbir R U N V X C R n N X R × ˙ n