Metamath Proof Explorer


Theorem elixx3g

Description: Membership in a set of open intervals of extended reals. We use the fact that an operation's value is empty outside of its domain to show A e. RR* and B e. RR* . (Contributed by Mario Carneiro, 3-Nov-2013)

Ref Expression
Hypothesis ixx.1 O=x*,y*z*|xRzzSy
Assertion elixx3g CAOBA*B*C*ARCCSB

Proof

Step Hyp Ref Expression
1 ixx.1 O=x*,y*z*|xRzzSy
2 anass A*B*C*ARCCSBA*B*C*ARCCSB
3 df-3an A*B*C*A*B*C*
4 3 anbi1i A*B*C*ARCCSBA*B*C*ARCCSB
5 1 elixx1 A*B*CAOBC*ARCCSB
6 3anass C*ARCCSBC*ARCCSB
7 ibar A*B*C*ARCCSBA*B*C*ARCCSB
8 6 7 bitrid A*B*C*ARCCSBA*B*C*ARCCSB
9 5 8 bitrd A*B*CAOBA*B*C*ARCCSB
10 1 ixxf O:*×*𝒫*
11 10 fdmi domO=*×*
12 11 ndmov ¬A*B*AOB=
13 12 eleq2d ¬A*B*CAOBC
14 noel ¬C
15 14 pm2.21i CA*B*
16 simpl A*B*C*ARCCSBA*B*
17 15 16 pm5.21ni ¬A*B*CA*B*C*ARCCSB
18 13 17 bitrd ¬A*B*CAOBA*B*C*ARCCSB
19 9 18 pm2.61i CAOBA*B*C*ARCCSB
20 2 4 19 3bitr4ri CAOBA*B*C*ARCCSB