Metamath Proof Explorer


Theorem ellimciota

Description: An explicit value for the limit, when the limit exists at a limit point. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses ellimciota.f φF:A
ellimciota.a φA
ellimciota.b φBlimPtKA
ellimciota.4 φFlimB
ellimciota.k K=TopOpenfld
Assertion ellimciota φιx|xFlimBFlimB

Proof

Step Hyp Ref Expression
1 ellimciota.f φF:A
2 ellimciota.a φA
3 ellimciota.b φBlimPtKA
4 ellimciota.4 φFlimB
5 ellimciota.k K=TopOpenfld
6 eleq1 x=yxFlimByFlimB
7 6 cbviotavw ιx|xFlimB=ιy|yFlimB
8 iotaex ιy|yFlimBV
9 n0 FlimBxxFlimB
10 4 9 sylib φxxFlimB
11 1 2 3 5 limcmo φ*xxFlimB
12 df-eu ∃!xxFlimBxxFlimB*xxFlimB
13 10 11 12 sylanbrc φ∃!xxFlimB
14 eleq1 x=ιy|yFlimBxFlimBιy|yFlimBFlimB
15 14 iota2 ιy|yFlimBV∃!xxFlimBιy|yFlimBFlimBιx|xFlimB=ιy|yFlimB
16 8 13 15 sylancr φιy|yFlimBFlimBιx|xFlimB=ιy|yFlimB
17 7 16 mpbiri φιy|yFlimBFlimB
18 7 17 eqeltrid φιx|xFlimBFlimB