Metamath Proof Explorer


Theorem elmapsnd

Description: Membership in a set exponentiated to a singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses elmapsnd.1 φFFnA
elmapsnd.2 φBV
elmapsnd.3 φFAB
Assertion elmapsnd φFBA

Proof

Step Hyp Ref Expression
1 elmapsnd.1 φFFnA
2 elmapsnd.2 φBV
3 elmapsnd.3 φFAB
4 elsni xAx=A
5 4 fveq2d xAFx=FA
6 5 adantl φxAFx=FA
7 3 adantr φxAFAB
8 6 7 eqeltrd φxAFxB
9 8 ralrimiva φxAFxB
10 1 9 jca φFFnAxAFxB
11 ffnfv F:ABFFnAxAFxB
12 10 11 sylibr φF:AB
13 snex AV
14 13 a1i φAV
15 2 14 elmapd φFBAF:AB
16 12 15 mpbird φFBA