Metamath Proof Explorer


Theorem elmopn

Description: The defining property of an open set of a metric space. (Contributed by NM, 1-Sep-2006) (Revised by Mario Carneiro, 12-Nov-2013)

Ref Expression
Hypothesis mopnval.1 J=MetOpenD
Assertion elmopn D∞MetXAJAXxAyranballDxyyA

Proof

Step Hyp Ref Expression
1 mopnval.1 J=MetOpenD
2 1 mopnval D∞MetXJ=topGenranballD
3 2 eleq2d D∞MetXAJAtopGenranballD
4 blbas D∞MetXranballDTopBases
5 eltg2 ranballDTopBasesAtopGenranballDAranballDxAyranballDxyyA
6 4 5 syl D∞MetXAtopGenranballDAranballDxAyranballDxyyA
7 unirnbl D∞MetXranballD=X
8 7 sseq2d D∞MetXAranballDAX
9 8 anbi1d D∞MetXAranballDxAyranballDxyyAAXxAyranballDxyyA
10 3 6 9 3bitrd D∞MetXAJAXxAyranballDxyyA