Metamath Proof Explorer


Theorem elno3

Description: Another condition for membership in No . (Contributed by Scott Fenton, 14-Apr-2012)

Ref Expression
Assertion elno3 ANoA:domA1𝑜2𝑜domAOn

Proof

Step Hyp Ref Expression
1 3anan32 FunAdomAOnranA1𝑜2𝑜FunAranA1𝑜2𝑜domAOn
2 elno2 ANoFunAdomAOnranA1𝑜2𝑜
3 df-f A:domA1𝑜2𝑜AFndomAranA1𝑜2𝑜
4 funfn FunAAFndomA
5 4 anbi1i FunAranA1𝑜2𝑜AFndomAranA1𝑜2𝑜
6 3 5 bitr4i A:domA1𝑜2𝑜FunAranA1𝑜2𝑜
7 6 anbi1i A:domA1𝑜2𝑜domAOnFunAranA1𝑜2𝑜domAOn
8 1 2 7 3bitr4i ANoA:domA1𝑜2𝑜domAOn